Yang Liu | Catalysis | Best Researcher Award

Mr. Yang Liu | Catalysis | Best Researcher Award

Associate Professor at Henan Normal University, China

Yang Liu is an Associate Professor at Henan Normal University, focusing on electrochemical energy materials. He has published 15 research papers in prestigious journals such as Advanced Materials, Materials Today, and Nano Energy. Liu’s work is concentrated on developing highly efficient catalysts for ammonia synthesis and nitrate reduction, alongside advancing renewable energy technologies. His research collaborations and impactful contributions to electrochemical catalysis have established him as a prominent researcher in the field. Liu continues to explore cutting-edge materials for energy conversion and storage.

 

profile

Scopus

🎓 Education:

2011—2015: Bachelor’s degree in Applied Physics from Xinyang Normal University. 2015—2017: Master’s degree in Condensed Matter Physics from Guangxi University, under the supervision of Prof. Pei Kang Shen. 2017—2020: Ph.D. in Chemical Engineering from Guangxi University, also under Prof. Pei Kang Shen’s guidance. During his academic journey, Liu honed his expertise in electrochemical materials and catalysis, gaining comprehensive knowledge in both theoretical and practical aspects of energy conversion technologies.

🏢 Experience:

Yang Liu is currently an Associate Professor at Henan Normal University, specializing in electrochemical energy materials. His research focuses on the design of efficient catalysts for processes like ammonia synthesis and nitrate reduction. He has co-authored 15 high-impact journal articles, establishing himself as a significant contributor to advancements in renewable energy and electrochemical catalysis. Liu’s work integrates experimental and theoretical approaches, targeting energy conversion and storage applications. His academic experience is marked by interdisciplinary collaborations with experts in physics, chemistry, and engineering.

🏆 Awards and Honors:

Although specific awards are not mentioned in the provided details, Yang Liu’s numerous publications in high-impact journals such as Advanced Materials and Nano Energy signify his recognition within the academic community. His equal contributions to collaborative works and extensive research on electrochemical energy materials suggest that Liu is held in high esteem by peers. His role as a co-author in groundbreaking studies in catalysis and renewable energy likely reflects his standing as a respected scientist in the field of material science.

🔍 Research Focus:

Yang Liu’s research centers on electrochemical energy materials, particularly catalysts for nitrate reduction and ammonia synthesis. He works on advancing electrocatalytic processes, focusing on improving reaction efficiency and sustainability. His recent studies include exploring metallic glasses, asymmetric 3D electronic structures, and single-atom catalysts. Liu is also involved in the development of self-powered electrocatalytic systems using renewable energy sources such as wind energy. His work aims to solve energy-related challenges by enhancing the performance of materials used in energy conversion and storage technologies.

Publications Top Notes:

 

  1. Single-, double-, and triple-atom catalysts on PC6 for nitrate reduction to ammonia: A computational screening
    • Authors: Huang, J., Hu, S., Liu, M., Liu, Y., Gao, S.
    • Journal: Electrochimica Acta, 2024, Volume 504, Article 144915

 

  1. Sodium Difluoro(oxalato)borate Additive-Induced Robust SEI and CEI Layers Enable Dendrite-Free and Long-Cycling Sodium-Ion Batteries
    • Authors: Liu, X., Zhao, J., Dong, H., Zhang, C., Chou, S.
    • Journal: Advanced Functional Materials, 2024, 34(37), Article 2402310

 

  1. Nonflammable Succinonitrile-Based Deep Eutectic Electrolyte for Intrinsically Safe High-Voltage Sodium-Ion Batteries
    • Authors: Chen, J., Yang, Z., Xu, X., Li, L., Chou, S.-L.
    • Journal: Advanced Materials, 2024, 36(28), Article 2400169

 

  1. Ultrafine Ru nanoparticles anchored on N-doped mesoporous hollow carbon spheres as a highly efficient bifunctional catalyst for Li–CO2 batteries
    • Authors: Zhao, J., Xu, X., Chen, J., Fan, Y., Qiao, Y.
    • Journal: Journal of Power Sources, 2024, 607, Article 234577

 

  1. A 30-year overview of sodium-ion batteries
    • Authors: Gao, Y., Zhang, H., Peng, J., Qiao, Y., Chou, S.-L.
    • Journal: Carbon Energy, 2024, 6(6), Article e464

 

  1. Cross-linked K0.5MnO2 nanoflower composites for high rate and low overpotential Li-CO2 batteries
    • Authors: Wu, J., Chen, J., Chen, X., Chou, S., Qiao, Y.
    • Journal: Chemical Science, 2024, 15(25), pp. 9591–9598

 

  1. The guarantee of large-scale energy storage: Non-flammable organic liquid electrolytes for high-safety sodium ion batteries
    • Authors: Chang, X., Yang, Z., Liu, Y., Chou, S., Qiao, Y.
    • Journal: Energy Storage Materials, 2024, Volume 69, Article 103407

 

  1. Sustainable, super-stable thermochromic material by coupling hydroxypropyl cellulose and sodium carboxymethyl cellulose
    • Authors: Pan, P., Liu, Y., Zhu, Z., Chen, L., Li, J.
    • Journal: International Journal of Biological Macromolecules, 2024, 268, Article 131945

 

Conclusion

Yang Liu’s outstanding research in electrochemical energy materials and his growing influence in the field make him a suitable candidate for the Best Researcher Award. His prolific publication record, collaborative research with established scientists, and significant contributions to energy storage and catalysis position him as an emerging leader. To strengthen his profile further, increasing first-author contributions and expanding international collaborations would provide additional recognition and impact.

Bhawana Pant | Catalysis | Best Researcher Award

Dr. Bhawana Pant | High Voltage Engineering | Best Researcher Award

Dr. Bhawana Pant is an accomplished chemist specializing in homogeneous and heterogeneous catalysis, CO surrogate chemistry, and natural products. She completed her Ph.D. in Chemistry from Kumaun University, Nainital, focusing on catalytic carbonylation using palladium and platinum complexes. Dr. Pant has served as an Assistant Professor at SSJ Campus, Almora, and has presented her research at both national and international conferences. She has authored several Scopus-indexed publications, including studies on catalytic oxidation, microwave-assisted reactions, and natural product chemistry. Dr. Pant has also participated in various workshops and FDPs, contributing to her expertise in advanced analytical techniques.

Publication Profile

Scholar

Orcid

Scopus

 

Evaluation for Best Researcher Award

Strengths:

  1. Strong Academic Background: The candidate possesses a robust educational foundation, with a Ph.D. in Chemistry focusing on catalytic carbonylation, backed by qualifications such as NET-JRF and GATE. This showcases a deep understanding and proficiency in the field of chemistry.
  2. Research and Publications: The candidate has a consistent track record of research, with multiple publications in reputed journals, including Scopus-indexed journals like Journal of the Indian Chemical Society and Asian Journal of Chemistry. The diversity in research topics, from catalytic oxidation to bioactive compound analysis, demonstrates versatility in research capabilities.
  3. Teaching Experience: The candidate has held Assistant Professor positions at SSJ Campus, Almora, gaining practical teaching experience, which complements their research. This enhances their ability to translate research findings into academic learning.
  4. Conference Participation and Presentations: The candidate has actively participated in national and international conferences, often presenting research findings, indicating a proactive approach to sharing knowledge and staying current in their field.
  5. Specialized Skills: Expertise in advanced techniques like microwave-assisted catalysis and working with transition metal complexes highlight a high level of technical skill.

Areas for Improvement:

  1. Impact Factor of Publications: Although the candidate has several publications, some are in journals with lower impact factors. Diversifying publications to higher-impact journals can further strengthen their research profile.
  2. Broader Recognition: Expanding participation in international conferences and engaging in collaborative research with renowned institutions could enhance the candidate’s visibility and recognition in the global research community.
  3. Research Focus: While the candidate’s research spans various topics, a more concentrated focus on a niche area could lead to more impactful contributions and greater specialization.

Educational Background:

Ph.D. in Electrical Engineering (2019) – Anna University, Chennai Thesis: Investigation on Nanofluids for Performance Enhancement of Electrical Applications. M.E. in High Voltage Engineering (2008) – National Engineering College, Kovilpatti (76% – First Class). B.E. in Electrical and Electronics Engineering (2006) – Odaiyappa College of Engineering and Technology, Theni (75% – First Class)

Professional Experience:

  • Over 13 years and 6 months of teaching experience, specializing in High Voltage Engineering.

Research Interests:

  • High Voltage Engineering
  • Nanofluids for Electrical Applications

 

Publications:

 

  1. Title: Solidago virgaurea L.: Chemical composition, antibacterial, and antileishmanial activity of essential oil from aerial part
    Authors: M Bisht, B Pant, M Samant, GC Shah, DS Dhami
    Journal: Journal of Essential Oil Bearing Plants
    Year: 2024

 

  1. Title: Trans (Cl)-2, 2′-bipyridinedicarbonyldichlororuthenium (II) complex catalyzed oxidation of olefins, aryl hydrocarbons and alcohols in homogeneous phase
    Authors: V Sharma, B Pant, D Prakash, P Sagar
    Journal: Journal of the Indian Chemical Society
    Year: 2021

 

  1. Title: Microwave-Assisted Hydroformylation of Alkenes with Schiff Base Palladium Complexes Using Glyoxylic Acid as Co and H2 Sources
    Authors: D Prakash, B Pant, P Sagar
    Available at: SSRN
    Year: [Not explicitly mentioned; likely recent based on SSRN posting].

Conclusion:

The candidate demonstrates significant potential for the Best Researcher Award due to a combination of academic excellence, consistent research output, and active participation in academic events. The comprehensive skill set, particularly in catalytic chemistry, coupled with an ongoing commitment to both teaching and research, makes the candidate a strong contender for this award. With further focus on publishing in higher-impact journals and broader international collaboration, the candidate’s research profile would be further enhanced.