Ms. Samiksha Painuly | Metal Organic | Young Scientist Award
Research Scholar | Gurukul Kangri Deemed to be University | India
Ms. Samiksha Painuly is a dedicated materials chemistry researcher specializing in the design, synthesis, and functional applications of metal–organic frameworks (MOFs), coordination polymers, and advanced hybrid materials. Her work focuses on developing luminescent MOFs, mesoporous composites, and one-dimensional coordination polymers tailored for sensing, photocatalysis, and environmental monitoring. She has expertise in synthesizing Zn-, Cd-, and Cu-based MOFs using wet-chemical, solvothermal, hydrothermal, and mechanochemical routes, integrating multitopic carboxylate and nitrogen donor linkers to achieve structurally robust and functionally responsive materials. Her research contributions span the development of ratiometric luminescent sensors for inorganic and organic analytes, MOF-based composites for heavy-metal detection, ammonia sensing, photocatalytic degradation, and emerging applications such as LED phosphors and catalytic conversion of acetylenic molecules. Skilled in structural and physicochemical characterization, she routinely employs PXRD, FTIR, SEM, XPS, UV–visible spectroscopy, fluorescence techniques, and NMR analysis to elucidate material properties and structure–activity relationships. She has published research articles and book chapters covering MOF synthesis, membrane design, separation processes, waste management, sustainable development, and IP-related dimensions of emerging materials. Her work reflects both fundamental understanding and applied innovation, contributing to interdisciplinary progress in materials chemistry, environmental remediation, and sensor technologies. She actively engages in scientific collaborations, presents her findings at conferences, and participates in workshops and training programs to expand her technical and conceptual expertise. With a strong foundation in experimental design, analytical reasoning, and creative problem-solving, she is committed to advancing next-generation MOF-based materials and their applications in sustainability, sensing, and functional materials research.
Profile: Google Scholar
Featured Publication
Samiksha, Rajput, G., Parmar, B., Dadhania, A., Isaeva, V., Kumar, R., & Bisht, K. K. (2025). Synthesis, structure, and photocatalytic properties of a Cu(II) coordination polymer derived from a flexible tripodal linker. SCENV, 11, 100277.
Painuly, S., Rajput, G., Parmar, B., Rachuri, Y., Isaeva, V. I., Kumar, R., & Bisht, K. K. (2025). Zn(II)-based multivariate, multicomponent metal–organic framework as a highly sensitive ratiometric luminescent sensor for Rhodamine-B in edibles. Inorganic Chemistry, 64, 16297–16302.