Dr. Kiran Mawale | Agricultural and Biological Sciences
| Young Scientist Award
CSIR Central Food Technological Research Institute Mysore | India
Dr. Kiran Mawale’s research focuses on the development, characterization, and application of nanoparticles in plant systems, particularly in enhancing growth, metabolite production, and pest management in Capsicum species. His work integrates nanotechnology with plant biotechnology to explore the modulation of phenylpropanoid pathway metabolites and antioxidant responses using metallic, chitosan-based, and biogenic nanoparticles. He has systematically studied the phytostimulatory and biochemical impacts of nanoparticle formulations on in vitro and ex vitro chilli cultures, demonstrating significant improvements in plant growth, bioactive yield, and resistance to thrips infestation. His research extends to molecular biology through the differential expression analysis of genes associated with pungency and antioxidant activity. By employing advanced characterization techniques such as DLS, Zeta potential, FTIR, XRD, SEM, and TEM, he established structure–function relationships between nanoparticle properties and their biological effects. His interdisciplinary contributions encompass nanoscience, plant cell culture, and metabolite profiling, with a strong emphasis on sustainable, nano-enabled strategies for crop protection and quality enhancement. Collectively, his findings advance the field of agri-nanobiotechnology, offering eco-friendly approaches for improving plant health, productivity, and biochemical fortification.
Featured Publications
Mawale, K. S., Kaila, N. H. J., Halami, P. M., Ramakrishna, C., Singanahalli Shivaramu, M., & Serva Peddha, M. (2025, October 10). Physicochemical and functional characterization of pearl millet-based probiotic beverage for antiaging potential in Caenorhabditis elegans. Foods, 14(20), 3460. https://doi.org/10.3390/foods14203460
Raphel, S., & Halami, P. M. (2025, June). Bioactive compounds from food-grade Bacillus. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.13935
Goel, A., & Halami, P. M. (2024, September). Safety assessment of probiotic Lactiplantibacillus plantarum MCC5231 and its persistence in gastrointestinal tract. Microbial Pathogenesis, 186, 106824. https://doi.org/10.1016/j.micpath.2024.106824
Peerzade, I. J., Mutturi, S., & Halami, P. M. (2024, May). Improved production of RNA-inhibiting antimicrobial peptide by Bacillus licheniformis MCC 2514 facilitated by a genetic algorithm optimized medium. Bioprocess and Biosystems Engineering. https://doi.org/10.1007/s00449-024-02998-2
Goel, A., Chauhan, A. S., & Halami, P. M. (2023, December). Lactiplantibacillus plantarum MCC5231 enriched carrot (Daucus carota) nectar: A value-added beverage with enhanced vitamin A. Journal of Food Measurement and Characterization, 17(12), 10205–10216. https://doi.org/10.1007/s11694-023-02104-2
Archer, A. C., Muthukumar, S. P., & Halami, P. M. (2023, October). Correction to: Lactobacillus fermentum MCC2759 and MCC2760 alleviate inflammation and intestinal function in high-fat diet-fed and streptozotocin-induced diabetic rats. Probiotics and Antimicrobial Proteins, 15(5), 1271–1272. https://doi.org/10.1007/s12602-023-10122-1