seyed matin malakouti | AI | Best Researcher Award

seyed matin malakouti | AI | Best Researcher Award

Seyed Matin Malakouti is an accomplished Electrical Engineering professional specializing in machine learning and control systems. He holds an MS in Control System Engineering from the University of Tabriz and a BS in Electrical Engineering from Isfahan University of Technology. Malakouti has published extensively on topics including wind power prediction, temperature change modeling, and heart disease classification. His work has appeared in prominent journals such as Energy Exploration & Exploitation and Case Studies in Chemical and Environmental Engineering. He has received recognition for his research, including awards for Best Researcher and nominations for Best Paper. Malakoutiā€™s research interests span applied machine learning, renewable energy, and biomedical signal processing. He is also an active peer reviewer for various scientific journals.

Publication profile

google scholar

šŸŽ“ Education

MS in Electrical Engineering ā€“ Control System Engineering University of Tabriz, Tabriz, Iran (2019 – 2022). BS in Electrical Engineering
Isfahan University of Technology (IUT), Isfahan, Iran (2014 – 2019)

šŸ¢ Professional Experience

Undergraduate Teaching Assistant Dept. of Electrical Engineering, Isfahan University of Technology (IUT) (2015 – 2018) Assisted in teaching core courses such as Calculus I, II, Electrical Circuit I, II, and Electronics II.

šŸ† Awards & Fellowships

Best Researcher, International Conference on Cardiology and Cardiovascular Medicine (2023). Nominated for Best Paper Award, International Research Awards on Mathematics and Optimization Methods (2023)

šŸ‘Øā€šŸ« Teaching Experience

Spring 2018: Calculus I, Teaching Assistant. Spring 2017: Calculus II, Teaching Assistant. Fall 2016: Electrical Circuit I, Teaching Assistant. Spring 2015: Electrical Circuit II, Teaching Assistant

Research for Best Researcher Award: Seyed Matin Malakouti

šŸŒŸ Strengths for the Award

  1. Diverse Research Contributions: Seyed Matin Malakouti has an extensive list of publications covering a broad range of topics, from wind power generation and temperature change prediction to heart disease classification and asteroid detection. This indicates a high level of versatility and a strong ability to apply machine learning across different domains.
  2. Cutting-Edge Techniques: His work utilizes advanced machine learning techniques such as CNN-LSTM, ensemble methods, and Bayesian optimization. This demonstrates a commitment to leveraging state-of-the-art methods to address complex problems.
  3. High-Impact Publications: Malakouti has published in high-impact journals such as Energy Exploration & Exploitation, Biomedical Signal Processing and Control, and Case Studies in Chemical and Environmental Engineering. His work is also recognized by prestigious conferences and has received nominations for awards.
  4. Peer Review Engagement: Active involvement in peer review for numerous reputable journals reflects his expertise and recognition within the academic community.
  5. Awards and Recognition: Being named the Best Researcher at an international conference and receiving nominations for best paper awards highlights his research’s quality and impact.

šŸ” Areas for Improvement

  1. Broader Impact Assessment: While his technical contributions are substantial, including a focus on how his research impacts broader societal and industrial contexts could further enhance his profile. Emphasizing real-world applications and collaborations could demonstrate the practical significance of his work.
  2. Interdisciplinary Collaboration: Engaging in interdisciplinary projects could further enrich his research profile. Collaborating with researchers from other fields, such as environmental science or healthcare, could lead to innovative solutions and increase the impact of his work.
  3. Public Engagement and Outreach: Increasing efforts in public science communication and outreach could help bridge the gap between academic research and public understanding. Engaging with non-academic audiences through popular science articles, talks, or educational programs could be beneficial.

Publication top notes

  1. Title: Predicting wind power generation using machine learning and CNN-LSTM approaches
    Citations: 46
    Year: 2022
    Journal: Wind Engineering 46(6), 1853-1869

 

  1. Title: Heart disease classification based on ECG using machine learning models
    Citations: 39
    Year: 2023
    Journal: Biomedical Signal Processing and Control 84, 104796

 

  1. Title: Utilizing time series data from 1961 to 2019 recorded around the world and machine learning to create a Global Temperature Change Prediction Model
    Citations: 37
    Year: 2023
    Journal: Case Studies in Chemical and Environmental Engineering 7, 100312

 

  1. Title: The usage of 10-fold cross-validation and grid search to enhance ML methods performance in solar farm power generation prediction
    Citations: 32
    Year: 2023
    Journal: Cleaner Engineering and Technology 15, 100664

 

  1. Title: Use machine learning algorithms to predict turbine power generation to replace renewable energy with fossil fuels
    Citations: 26
    Year: 2023
    Journal: Energy Exploration & Exploitation 41(2), 836-857

 

  1. Title: Evaluation of the application of computational model machine learning methods to simulate wind speed in predicting the production capacity of the Swiss basel wind farm
    Citations: 21
    Year: 2022
    Journal: 2022 26th International Electrical Power Distribution Conference (EPDC), 31-36

 

  1. Title: Improving the prediction of wind speed and power production of SCADA system with ensemble method and 10-fold cross-validation
    Citations: 19
    Year: 2023
    Journal: Case Studies in Chemical and Environmental Engineering 8, 100351

 

  1. Title: Estimating the output power and wind speed with ML methods: a case study in Texas
    Citations: 17
    Year: 2023
    Journal: Case Studies in Chemical and Environmental Engineering 7, 100324

 

  1. Title: Babysitting hyperparameter optimization and 10-fold-cross-validation to enhance the performance of ML methods in Predicting Wind Speed and Energy Generation
    Citations: 15
    Year: 2023
    Journal: Intelligent Systems with Applications 19, 200248

 

  1. Title: AERO2022-flying danger reduction for quadcopters by using machine learning to estimate current, voltage, and flight area
    Citations: 15
    Year: 2022
    Journal: e-Prime-Advances in Electrical Engineering, Electronics and Energy 2, 100084

 

  1. Title: Prediction of wind speed and power with LightGBM and grid search: case study based on Scada system in Turkey
    Citations: 8
    Year: 2023
    Journal: International Journal of Energy Production and Management 8.

 

šŸ† Conclusion

Seyed Matin Malakouti is a strong candidate for the Research for Best Researcher Award due to his diverse and impactful research contributions, utilization of advanced machine learning techniques, and recognition within the academic community. By focusing on broader impact, interdisciplinary collaboration, and public engagement, he can further enhance his research profile and increase the overall impact of his work.

Weihua Liu| AI | Best Researcher Award

Ā Dr. Weihua Liu| AI | Best Researcher Award

Ā Dr at AthenaEyesCO., LTD. China

With extensive contributions to academia and industry, I’ve authored over 20 influential papers and filed more than 80 patents, underscoring my commitment to innovation at the intersection of AI and healthcare. My career spans leadership in national science foundation projects and pioneering advancements in medical imaging and diagnostic technologies.

Profile

  1. Orcid

šŸŽ“Education

Post-Doctoral Research Beijing Institute of Technology, School of Medical Technology (Nov 2021 – Jun 2024) Co-supervisor: Chen Duanduan, Focus: Construction and Application of Medical Multi-modal Large Models. PhD in Computer Science Beijing Institute of Technology, School of Computer Science (Sep 2014 – Jun 2021) Supervisor: Liu Xiabi Dissertation: “Deep Network Structure and Its Learning Method Based on Pulmonary Nodule Detection and Lung Parenchyma Segmentation”. Bachelor’s and Master’s Degrees Changsha University of Science and Technology, School of Computer and Communication Engineering Bachelor’s Degree in Computer Science and Technology (Sep 2002 – Jun 2006), Master’s Degree in Software Engineering and Theory (Graduated Jun 2009), Research Focus: Image Processing and Pattern Recognition

šŸ”¬Research Projects

National Natural Science Foundation of China Project: Research on Intelligent Assessment Method for Stroke Risk Based on High-Risk Carotid Plaque-Complex Blood Flow Image Feature Analysis (2023-2026). Beijing Natural Science Foundation Project: Research on the Model of Acute Respiratory Distress Syndrome Assisted Diagnosis and Treatment Based on AI and Data Mining (2023-2026). Changsha Major Science and Technology Special Project Research and Application of Trustworthy Intelligent Vision Key Technologies in 5G Environment (2020-2023)

šŸš€ Professional Experience:

As an AI Algorithm Scientist at 3M’s Beijing Research and Development Center, I spearheaded the development of the BAX framework, a unified cross-platform AI deployment system widely adopted in biometric intelligence systems globally.

šŸ’” Patents:

I’ve filed over 80 patents, showcasing my innovations in areas like multimodality-based medical models, facial recognition, and medical identity authentication.

šŸŒŸ Research Expertise:

With a profound focus on AI and healthcare intersections, I bring extensive theoretical knowledge in biometric technology, physiological and psychological computing, and medical assistant diagnosis.

Publications Top Notes šŸ“

  • Shape-margin knowledge augmented network for thyroid nodule segmentation and diagnosis
    • Year: 2024
    • Authors: Liu, Weihua; Lin, Chaochao; Chen, Duanduan; Niu, Lijuan; Zhang, Rui; Pi, Zhaoqiong
    • Source: Computer Methods and Programs in Biomedicine

 

  • A pyramid input augmented multi-scale CNN for GGO detection in 3D lung CT images
    • Year: 2023
    • Authors: Liu, Weihua; Liu, Xiabi; Luo, Xiongbiao; Wang, Murong; Han, Guanghui; Zhao, Xinming; Zhu, Zheng
    • Source: Pattern Recognition

 

  • Stone needle: A general multimodal large-scale model framework towards healthcare
    • Year: 2023
    • Authors: Liu, Weihua; Zuo, Yong
    • Source: arXiv preprint arXiv:2306.16034

 

  • Contraction Mapping of Feature Norms for Data Quality Imbalance Learning
    • Year: 2022
    • Authors: Liu, Weihua; Liu, Xiabi; Li, Huiyu; Lin, Chaochao
    • Source: Available at SSRN 4250246

 

  • Integrating lung parenchyma segmentation and nodule detection with deep multi-task learning
    • Year: 2021
    • Authors: Liu, Weihua; Liu, Xiabi; Li, Huiyu; Li, Mincan; Zhao, Xinming; Zhu, Zheng
    • Source: IEEE Journal of Biomedical and Health Informatics

 

  • A new three-stage curriculum learning approach for deep network based liver tumor segmentation
    • Year: 2020
    • Authors: Li, Huiyu; Liu, Xiabi; Boumaraf, Said; Liu, Weihua; Gong, Xiaopeng; Ma, Xiaohong
    • Source: 2020 International Joint Conference on Neural Networks (IJCNN)

 

  • URDNet: a unified regression network for GGO detection in lung CT images
    • Year: 2020
    • Authors: Liu, Weihua; Ren, Yuchen; Li, Huiyu
    • Source: Wireless Communications and Mobile Computing

 

  • Content-sensitive superpixel segmentation via self-organization-map neural network
    • Year: 2019
    • Authors: Wang, Murong; Liu, Xiabi; Soomro, Nouman Q; Han, Guanhui; Liu, Weihua
    • Source: Journal of Visual Communication and Image Representation

 

  • Hybrid resampling and multi-feature fusion for automatic recognition of cavity imaging sign in lung CT
    • Year: 2019
    • Authors: Han, Guanghui; Liu, Xiabi; Zhang, Heye; Zheng, Guangyuan; Soomro, Nouman Qadeer; Wang, Murong; Liu, Weihua
    • Source: Future Generation Computer Systems