Jinzhu Shen | Engineering | Best Researcher Award

Dr. Jinzhu Shen | Engineering | Best Researcher Award

Donghua University  | China

Jinzhu Shen is a PhD candidate in Fashion Design at Donghua University, specializing in soft robotics, machine vision, and intelligent manufacturing for garment automation. With a strong academic foundation from Jiangnan University, where she completed both her bachelor’s and master’s degrees, she has advanced her expertise in integrating cutting-edge robotics with apparel production. Currently, Jinzhu is also a visiting researcher at Universidad Politécnica de Madrid, further expanding her global research perspective. Her career bridges engineering and design, with hands-on industry experience as an R&D engineer at Rouchu Robotics, where she has contributed to the development of soft-robotic grippers, intelligent sewing systems, and fabric-handling technologies. She has published extensively in leading journals, presented at international conferences such as TIWC, and is an inventor on multiple patents. Jinzhu’s research combines creativity with innovation, aiming to revolutionize garment production processes through automation, precision, and artificial intelligence, making her a rising talent in textile engineering.

Profile

Orcid

Education 

Jinzhu Shen educational background reflects a strong commitment to innovation and interdisciplinary research in fashion technology. She is currently pursuing a PhD in Fashion Design at Donghua University, focusing on robotic automation and AI-driven garment manufacturing systems. During her doctoral studies, she participated in an international visiting research program at Universidad Politécnica de Madrid, where she expanded her expertise in soft robotics and advanced textile engineering. Prior to this, Jinzhu earned both her bachelor’s and master’s degrees in Fashion Design from Jiangnan University, where she gained comprehensive knowledge in garment engineering, textile science, and design technology. Her studies laid a strong foundation in apparel production methods, computational modeling, and product innovation. Throughout her academic journey, Jinzhu has combined engineering principles with design thinking, demonstrating strong analytical and creative skills. Her international exposure and advanced research training have positioned her at the forefront of integrating emerging technologies into the textile and fashion industry.

Experience 

Jinzhu Shen has developed a unique blend of academic and industry experience, contributing significantly to textile automation and robotics innovation. She currently serves as an R&D engineer at Suzhou Rouchu Robotics, where she has worked on advanced soft robotic fingers, intelligent sewing systems, and machine vision algorithms for fabric handling. Her research and engineering efforts focus on designing robotic solutions to improve garment manufacturing efficiency, precision, and sustainability. Jinzhu’s contributions include simulation of robotic gripping forces, development of autonomous sewing strategies, and integration of AI-based vision systems. She has also led and contributed to multiple funded projects, collaborating with academic institutions and industry partners. In addition to her engineering role, her doctoral and visiting researcher positions have enabled her to publish in top-tier journals, present at prestigious conferences, and secure patents. Her experience demonstrates a deep understanding of fashion design, robotics, and automation, positioning her as an innovative leader in textile engineering.

Awards and Honors 

Jinzhu Shen has received multiple awards and scholarships in recognition of her academic excellence, research innovation, and contributions to textile technology. She was awarded the prestigious Taicang YIDAO Clothing Scholarship for two consecutive years, highlighting her leadership in garment automation research. Earlier, she earned the Outstanding Poster Award at the Apparel Science and Technology Academic Exchange Conference, showcasing her impactful contributions to apparel robotics. Throughout her studies at Jiangnan University, Jinzhu consistently demonstrated excellence, earning several academic scholarships, including second- and third-class honors. She was also recognized as a merit student, reflecting her strong academic performance and leadership. Her achievements extend beyond academics, with multiple patents credited to her name, underscoring her role as an innovator in robotic garment handling systems. These honors collectively illustrate her dedication to pushing boundaries in apparel engineering, her growing influence in textile research, and her commitment to advancing the intersection of robotics, AI, and fashion design.

Research Focus 

Jinzhu Shen research focuses on revolutionizing garment production through soft robotics, machine vision, and intelligent manufacturing systems. Her work integrates engineering precision and design innovation, aiming to fully automate the fabric handling and sewing process. She has developed robotic grippers and AI-driven vision systems capable of manipulating delicate textiles, addressing long-standing challenges in apparel manufacturing. Her doctoral studies emphasize the synergy between robotics and textiles, with a focus on fabric alignment, smoothness evaluation, and deep-learning-based automation strategies. She also investigates sustainable approaches to garment production by optimizing industrial workflows through robotics. Jinzhu’s contributions include numerous peer-reviewed publications, patents, and presentations at international conferences, demonstrating her ability to translate theoretical research into practical applications. Her interdisciplinary expertise spans computational modeling, product innovation, and industrial collaboration, positioning her as a pioneer in transforming the traditional fashion supply chain into a technology-driven ecosystem. Her research bridges design, engineering, and AI to shape the future of apparel manufacturing.

Publications

Title: Intelligent and Precise Textile Drop-Off: A New Strategy for Integrating Soft Fingers and Machine Vision Technology
Year: 2025

Title: A study on the formulation of process parameters for soft finger-assisted fabric stitching
Year: 2024

Title: A novel evaluation method of Chinese female lower body shapes based on machine learning
Year: 2024

Title: Research progress of automatic grasping methods for garment fabrics
Year: 2023

Conclusion

Jinzhu Shen exceptional research achievements, spanning academic and industrial innovation, make her a strong contender for the Best Researcher Award. Her pioneering work in soft robotics and automated garment manufacturing demonstrates a rare blend of creativity, technical depth, and practical application. With continued global engagement and leadership development, she is poised to become a transformative figure in intelligent manufacturing and fashion technology research.

Seokhwan Lee | Engineering | Best Researcher Award

Dr. Seokhwan Lee | Engineering |Best Researcher Award

Dr at Korea Institute of Machinery and Materials,  South Korea

Dr. Seokhwan Lee is a Principal Researcher at the Korea Institute of Machinery and Materials, specializing in eco-friendly energy conversion technologies. With a Ph.D. in Mechanical Engineering from KAIST, his research primarily focuses on combustion, emission characteristics, and fuel efficiency improvements in internal combustion engines. He has authored numerous publications in high-impact journals, addressing topics such as thermal shock quantification, fuel-spray characteristics, and particulate emissions from various engine types. Dr. Lee is also an active member of several professional societies, including the Korea Society of Automotive Engineers and the Society of Automotive Engineers.

 

 

Profile

scopus

Orcid

🎓Education:

Ph.D. in Mechanical Engineering, KAIST, 2005. M.S. in Mechanical Engineering, KAIST, 2001. B.S. in Mechanical Engineering, KAIST, 1999

🔍Research Experience:

Principal Researcher, Korea Institute of Machinery and Materials (2006–present) . Research Associate, KAIST Combustion Engineering Research Center (2005–2006). Visiting Scholar, University of Michigan (2003–2004)

Professional Affiliations:

Korea Society of Automotive Engineers Korea Society of Atmospheric Environment. Korea Association for Particle and Aerosol Research. Society of Automotive Engineers

🌟 Strengths for the Award

  1. Extensive Research Experience: Dr. Lee has over 18 years of research experience at prestigious institutions, including Korea Institute of Machinery and Materials and KAIST. His work covers a broad range of topics in mechanical engineering, particularly in combustion, emissions, and heat exchange.
  2. Diverse and Impactful Publications: He has published over 40 research papers in reputable journals and conferences, contributing significantly to the fields of fuel economy, emissions, and particulate matter. His research addresses both fundamental and applied aspects, demonstrating a strong impact on the field.
  3. International Collaborations: Dr. Lee’s work includes collaborations with renowned international institutions, such as the University of Michigan, enhancing the global reach and credibility of his research.
  4. Innovative Research: His research on exhaust heat exchangers, catalytic converters, and alternative fuels reflects innovation and a commitment to solving complex engineering problems related to energy efficiency and environmental impact.
  5. Awards and Recognition: Dr. Lee’s extensive publication record and research contributions suggest recognition by peers in the form of citations and accolades, showcasing his research’s impact and relevance.

 Areas for Improvement

  1. Visibility and Impact: While Dr. Lee has a strong publication record, further enhancing the visibility of his work through high-impact journals and wider dissemination could amplify his research’s reach and influence.
  2. Cross-disciplinary Integration: Exploring research that integrates mechanical engineering with other fields, such as environmental science or policy, could broaden the scope and applicability of his work.
  3. Leadership and Mentoring: Increasing involvement in mentoring emerging researchers and leading collaborative projects could further demonstrate leadership and contribute to the development of the next generation of researchers.

📚  Publications

  • Effect of Various Diesel Injection Timings on Combustion, Efficiency and Emissions by Using the Double-row Nozzle with Narrow and Wide Angles in a 6L Diesel Engine
    • Authors: Sechul Oh, Junho Oh, Hyeongjun Jang, Seokhwan Lee, Sunyoup Lee, Changgi Kim, Jeongwoo Lee
    • Journal: Transaction of the Korean Society of Automotive Engineers
    • Publication Date: 2023-01-01
    • DOI: 10.7467/KSAE.2023.31.1.061

 

  • Effects of Piston Shape and Nozzle Specifications on Part-Load Operation of Natural Gas–Diesel Dual-Fuel RCCI Engine and Its Application to High Load Extension
    • Authors: Sechul Oh, Junho Oh, Hyeong-Jun Jang, Seokhwan Lee, Sunyoup Lee, Changgi Kim, Jeongwoo Lee
    • Journal: Fuel
    • Publication Date: 2022-11
    • DOI: 10.1016/j.fuel.2022.125361

 

  • Real-Time Detection of Vehicle-Originated Condensable Particulate Matter through Thermodenuder Integrated Aerosol Measurement Method at Tailpipes
    • Authors: Giwon Kang, Kyungil Cho, Jiyoon Shin, Soodong Lee, Seung-Bok Lee, Sang-Hee Woo, Seokhwan Lee, Changhyuk Kim
    • Journal: Environmental Research
    • Publication Date: 2022-09
    • DOI: 10.1016/j.envres.2022.113487

 

  • Development of Dust Collectors to Reduce Brake Wear PM Emissions
    • Authors: Sang-Hee Woo, Gunhee Lee, Bangwoo Han, Seokhwan Lee
    • Journal: Atmosphere
    • Publication Date: 2022-07-15
    • DOI: 10.3390/atmos13071121

 

  • Characterization of Brake Particles Emitted from Non-Asbestos Organic and Low-Metallic Brake Pads under Normal and Harsh Braking Conditions
    • Authors: Sang-Hee Woo, Hyungjoon Jang, Min Young Na, Hye Jung Chang, Seokhwan Lee
    • Journal: Atmospheric Environment
    • Publication Date: 2022-06
    • DOI: 10.1016/j.atmosenv.2022.119089

 

  • Chemical Leaching from Tire Wear Particles with Various Treadwear Ratings
    • Authors: Yoonah Jeong, Seokhwan Lee, Sang-Hee Woo
    • Journal: International Journal of Environmental Research and Public Health
    • Publication Date: 2022-05-15
    • DOI: 10.3390/ijerph19106006

 

  • Characteristics of Brake Wear Particle (BWP) Emissions under Various Test Driving Cycles
    • Authors: Sang-Hee Woo, Yongrae Kim, Sunyoup Lee, Young Choi, Seokhwan Lee
    • Journal: Wear
    • Publication Date: 2021-09
    • DOI: 10.1016/j.wear.2021.203936

 

  • Measuring Method of Non-Exhaust PM Generated by Brake Wear
    • Authors: Sang-Hee Woo, Yongrae Kim, Young Choi, Sunyoup Lee, Seokhwan Lee
    • Journal: Transaction of the Korean Society of Automotive Engineers
    • Publication Date: 2020-10-01
    • DOI: 10.7467/KSAE.2020.28.10.701

 

  • Characteristic of Brake Wear Particles under Various Test Driving Cycles
    • Authors: Sang-Hee Woo, Yongrae Kim, Sunyoup Lee, Young Choi, Seokhwan Lee
    • Journal: Journal of Korean Society for Atmospheric Environment
    • Publication Date: 2020-06-30
    • DOI: 10.5572/KOSAE.2020.36.3.346

 

 

🏆 Conclusion

Dr. Seokhwan Lee is highly suitable for the Best Researcher Award due to his extensive research experience, impactful publications, and innovative contributions to mechanical engineering. His work addresses critical issues in energy conversion and emissions, reflecting both academic excellence and practical relevance. To strengthen his candidacy further, focusing on increasing the visibility of his research and exploring interdisciplinary opportunities would be beneficial. Overall, Dr. Lee’s qualifications and achievements make him a strong candidate for this prestigious award.