Sonia Siwatch | Nanomaterials | Women Researcher Award

Dr. ā€ŒSonia Siwatch |Nanomaterials| Women Researcher Award

Dr at Sonia Siwatch DST New Delhi, India

Dr. Sonia Siwatch is a skilled researcher in Material Science and Nanotechnology, holding a Ph.D. from Kurukshetra University, India. Her thesis focused on nanostructured metal oxide semiconductors for dye-sensitized solar cells. She earned her Master of Engineering in Electronics and Communication from NITTTR, Punjab University, and a Bachelor of Technology from Guru Jambheshwar University. Dr. Sonia Siwatch has attended numerous specialized workshops and courses and has received several honors, including the Women Scientist Scheme (WOS-A) award. Her research interests lie in nanomaterials synthesis, characterization, and clean energy technologies, aiming to advance sustainable solutions in these fields.

Profile

 

Academic Qualifications šŸŽ“

Ph.D. in Electronic Science Department of Electronic Science, Kurukshetra University, Haryana, India Awarded in 2021 Thesis Title: ā€œStudy of Nanostructured Metal Oxide Semiconductor as Photoanode for Dye Sensitized Solar Cellā€. Master of Engineering in Electronics and Communication Engineering NITTTR (National Institute of Technical Teachers Training and Research), Punjab University, Chandigarh, India Year of Completion: 2013 Percentage: 76.3%. Bachelor of Technology in Electronics and Communication Engineering Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India Percentage: 81.39% All India Senior School Certificate Examination CBSE Board, K V Hisar Cantt, Hisar, Haryana, India Percentage: 76.4%. All India Secondary School Examination CBSE Board, K V Hisar Cantt, Hisar, Haryana, India Percentage: 75.4%

Workshops/Short Term Courses AttendedšŸ’¼

 

Materials and Processes for Advanced Engineering Applications School of Materials Science and Technology, National Institute of Technology, Kurukshetra Duration: 11-16, 2017Silicon PV Systems: Fundamentals, Design and Metrology (SPVW-2018)CSIR-National Physical Laboratory Duration: 10-14 September 2018Graphene Based Device Fabrication and Characterization Sponsored by MHRD and organised by UIET, Kurukshetra University Duration: 26th – 27th February, 2019Nanomaterials and Devices Applied Science Department, NITTTR Chandigarh Duration: 27/4/2020 to 1/5/2020Nanoelectronics Devices and Circuits Electronics and Communication Engineering Department, NITTTR Chandigarh Duration: 17/8/2020 to 21/8/2020Energy Storage Materials Applied Science Department, NITTTR Chandigarh Duration: 24/8/2020 to 28/8/2020Smart Materials and Nanotechnology Applied Science Department, NITTTR Chandigarh Duration: 31/8/2020 to 4/9/2020

Fellowship Awards and HonoursšŸ†

Selected as Women Scientist under Women Scientist Scheme (WOS-A), Department of Science and Technology, New Delhi.Received Honorable Mention award in Nanoartography Science Image competition 2019. (NanoArtography is an international science image competition sponsored by Materials Today, Nanotechnology World Association, A. J. Drexel Nanomaterials Institute, Drexel University Materials Science & Engineering Dept, IUPUI Integrated Nanosystems Development Institute).Finalist in Nanoartography Science Image competition 2020.Finalist in Nanoartography Science Image competition 2021.Topper in graduation: Received Rs. 5000/- scholarship in 1st and 5th semesters.

Areas of Interest

  • Material Science
  • Nanomaterials Synthesis and Characterization
  • Clean Energy

Publications Top Notes šŸ“

  1. Role of surfactant in optimization of 3D ZnO floret as photoanode for dye-sensitized solar cell:
    • Authors: Siwatch, S., Kundu, V., Kumar, A., Kumar, S.
    • Journal: Applied Nanoscience (Switzerland), 2020, 10(4), pp. 1035ā€“1044.
    • Summary: This study investigates the effect of surfactants on the morphology and performance of 3D ZnO florets used as photoanodes in DSSCs. The optimization of ZnO florets with surfactants aims to enhance light absorption and electron transport, leading to improved efficiency of the solar cells.
  2. Nitrogen and silver codoped one-dimensional ZnO nanostructure for optoelectronic application:
    • Authors: Kumari, M., Kundu, V.S., Kumar, S., Siwatch, S., Chauhan, N.
    • Journal: Journal of Sol-Gel Science and Technology, 2020, 93(2), pp. 302ā€“308.
    • Summary: The article explores the synthesis and characterization of nitrogen and silver codoped ZnO nanostructures. These doped nanostructures show enhanced optoelectronic properties, making them suitable for various applications, including sensors and solar cells.
  3. Effect of novel ZnO/Zn2SnO4 photoanode on the performance of dye-sensitized solar cell:
    • Authors: Siwatch, S., Kundu, V.S., Kumar, A., Chauhan, N., Kumari, M.
    • Journal: Optik, 2019, 194, 163117.
    • Summary: This paper evaluates the performance of a novel ZnO/Zn2SnO4 composite photoanode in DSSCs. The study demonstrates that the composite photoanode offers better charge separation and transport, resulting in enhanced efficiency of the solar cells.
  4. Morphology correlated efficiency of ZnO photoanode in dye-sensitized solar cell:
    • Authors: Siwatch, S., Kundu, V.S., Kumar, A., Chauhan, N., Kumari, M.
    • Journal: Materials Research Express, 2019, 6(10), 1050D3.
    • Summary: This research focuses on the correlation between the morphology of ZnO photoanodes and their efficiency in DSSCs. The findings suggest that specific morphologies of ZnO photoanodes can significantly improve the light-harvesting and electron transport properties, leading to higher cell efficiencies.
  5. Synthesis of nitrogen- and cobalt-doped rod-like mesoporous ZnO nanostructures to study their photocatalytic activity:
    • Authors: Chauhan, N., Singh, V., Kumar, S., Sirohi, K., Siwatch, S.
    • Journal: Journal of Sol-Gel Science and Technology, 2019, 91(3), pp. 567ā€“577.
    • Summary: This study synthesizes and characterizes nitrogen- and cobalt-doped mesoporous ZnO nanostructures. The doped nanostructures exhibit enhanced photocatalytic activity, which is beneficial for environmental applications such as water purification and pollutant degradation.
  6. Synthesis, characterization and dye-sensitized solar cell application of Zinc oxide based coaxial core-shell heterostructure:
    • Authors: Kumari, M., Singh Kundu, V., Kumar, S., Chauhan, N., Siwatch, S.
    • Journal: Materials Research Express, 2019, 6(8), 085050.
    • Summary: The article presents the synthesis and application of ZnO-based coaxial core-shell heterostructures in DSSCs. These structures enhance light absorption and electron transport, leading to improved performance of the solar cells
    • .
  7. Facile synthesis of novel ZnO/Cd0.5Zn0.5S photoanode for dye-sensitized solar cell:
    • Authors: Siwatch, S., Kundu, V.S., Kumar, A., Kumar, S., Kumari, M.
    • Journal: Materials Research Express, 2019, 6(8), 085029.
    • Summary: This study explores the synthesis of a novel ZnO/Cd0.5Zn0.5S composite photoanode for DSSCs. The composite material shows improved light-harvesting and charge transport properties, which contribute to higher efficiency in solar cell applications.

 

 

Wonjun Lee| Applied Mathematics | Best Researcher Award

Dr. Wonjun Lee | Applied Mathematics | Best Researcher Award

Dr at University of Minnesota,Ā  United States

Driven by a passion for mathematical analysis and machine learning, I specialize in developing partial differential equations (PDE)-based algorithms to tackle high-dimensional machine learning challenges. With a Ph.D. in Mathematics from UCLA and a background in applied mathematics, I’ve honed my expertise in optimal transport, gradient flows, and mean field games. Currently, as an IMA-NIST Postdoctoral Fellow at the University of Minnesota, I collaborate on machine learning projects with esteemed professors. My research, teaching, and work experiences underscore my commitment to advancing mathematical theory and its applications in cutting-edge technologies.

Profile

Research Interests šŸ§ 

My research focuses on developing partial differential equations (PDE)-based algorithms to solve high-dimensional machine learning problems and analyze the theoretical properties of the algorithms. My interests include machine learning, generative modeling, optimal transport, gradient flows, and mean field games.

Academic Positions šŸŽ“

University of Minnesota, Twin Cities, Minneapolis, MN IMA-NIST Postdoctoral Fellow | Aug 2022 – Present Joint NIST-IMA Postdoctoral Fellowship in Analysis of Machine Learning at the Institute for Mathematics and its Applications (IMA) in the College of Science and Engineering at the University of Minnesota (UMN). Working on machine learning projects with Prof. Jeff Calder, Prof. Gilad Lerman, and Prof. Li Wang. University of California, Los Angeles, Los Angeles, CA Assistant Adjunct Professor | Jun 2022 – Aug 2022 Taught introductory programming course in C++ (PIC 10A) as the main instructor.

Education šŸ“š

University of California, Los Angeles, Los Angeles, CA Ph.D. in Mathematics | Sep 2017 – Jun 2022, Advisor: Professor Stanley Osher. Thesis: Algorithms For Optimal Transport And Their Applications To PDEs. George Mason University, Fairfax, Virginia B.S. in Mathematics | May 2015 Concentration in Applied Mathematics and Mathematical Statistics GPA: 3.84/4.0 magna cum laude, Phi Beta Kappa.

Honors and Awards šŸ…

2022: Rising Star in Data Science from the University of Chicago. PROFILE LINK, 2021: UCLA Dissertation Year Fellowship ($20,000), 2014: Outstanding Presentation Award at the Joint Mathematical Meetings, Baltimore, MD.

Teaching Experience šŸ“š

University of Minnesota, Minneapolis, MN Instructor | Aug 2022 ā€“ Present Spring 2024: Math 2243 – Linear Algebra and Differential Equations Spring 2023: Math 2243 – Linear Algebra and Differential Equations University of California, Los Angeles, Los Angeles, CA Teaching Assistant | Aug 2017 ā€“ Jun 2021 PIC 10ABC: Intro, intermediate, advanced C++ programming. PIC 16: Python with Applications – Python modules such as PyQt, SciPy, Pandas, and NLTK. Math 164: Fundamentals of optimization. Linear / nonlinear programming. Math 151B: Applied numerical methods with analysis of algorithms and computer implementations. Mentor from Directed Reading Program (DRP) | Jan 2021 – Mar 2022 Mentoring undergraduate students for the quarter-long independent study project in math. Topics: Unsupervised learning of image segmentation, Generative Adversarial Networks, Applications of mean field games in finance.

Work Experience šŸ’¼

University of California, Los Angeles, Los Angeles, CA Research Assistant | Aug 2017 ā€“ Aug 2022Developed a new algorithm to compute the Wasserstein distance between large point clouds. Applications in machine learning models such as generative adversarial networks (GAN). (PyTorch, C++)Developed a fast and accurate algorithm that computes the solution of the Wasserstein gradient flows on 2D or 3D grids. (C++)Developed a new mean-field control model in controlling the propagation of epidemics in response to COVID pandemic. (C++)Studied Regularity theory for minimizers of polyconvex functionals related to incompressible / compressible Navier-Stokes equations under Prof. Wilfrid Gangbo and Prof. Matt Jacobs.George Mason University, Fairfax, VA Research Assistant | May 2017 ā€“ May 2018Developed deep learning methods using SVD and diffusion map for classification tasks. (Tensorflow)Cheiron, Inc., Washington D.C. Actuary | Feb 2015 – Sep 2016Evaluated the likelihood of undesirable events using actuarial pricing and projection models. Worked on actuarial valuation reports for public, single-employer, and multi-employer plans.

Skills šŸ’»

Programming: C/C++, Python, Matlab Language: English, Korean

Publications Top Notes šŸ“

  1. Title: Controlling propagation of epidemics via mean-field control
    • Authors: W. Lee, S. Liu, H. Tembine, W. Li, S. Osher
    • Journal: SIAM Journal on Applied Mathematics
    • Volume: 81
    • Issue: 1
    • Pages: 190-207
    • Number of Citations: 79
    • Year: 2021

 

  1. Title: Mean field control problems for vaccine distribution
    • Authors: W. Lee, S. Liu, W. Li, S. Osher
    • Journal: Research in the Mathematical Sciences
    • Volume: 9
    • Issue: 3
    • Pages: 51
    • Number of Citations: 28
    • Year: 2022

 

  1. Title: Generalized unnormalized optimal transport and its fast algorithms
    • Authors: W. Lee, R. Lai, W. Li, S. Osher
    • Journal: Journal of Computational Physics
    • Volume: 436
    • Pages: 110041
    • Number of Citations: 23
    • Year: 2021

 

  1. Title: Computational mean-field information dynamics associated with reaction-diffusion equations
    • Authors: W. Li, W. Lee, S. Osher
    • Journal: Journal of Computational Physics
    • Volume: 466
    • Pages: 111409
    • Number of Citations: 16
    • Year: 2022

 

  1. Title: Energy-efficient velocity control for massive numbers of UAVs: A mean field game approach
    • Authors: H. Gao, W. Lee, Y. Kang, W. Li, Z. Han, S. Osher, H.V. Poor
    • Journal: IEEE Transactions on Vehicular Technology
    • Volume: 71
    • Issue: 6
    • Pages: 6266-6278
    • Number of Citations: 16
    • Year: 2022

 

  1. Title: Weakly-supervised convolutional neural networks for vessel segmentation in cerebral angiography
    • Authors: A. Vepa, A. Choi, N. Nakhaei, W. Lee, N. Stier, A. Vu, G. Jenkins, X. Yang, …
    • Conference: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer ā€¦
    • Pages: 11
    • Number of Citations: 11
    • Year: 2022

 

  1. Title: The back-and-forth method for Wasserstein gradient flows
    • Authors: M. Jacobs, W. Lee, F. LĆ©ger
    • Journal: ESAIM: Control, Optimisation and Calculus of Variations
    • Volume: 27
    • Pages: 28
    • Number of Citations: 11
    • Year: 2021

 

  1. Title: Energy-efficient velocity control for massive numbers of rotary-wing UAVs: A mean field game approach
    • Authors: H. Gao, W. Lee, W. Li, Z. Han, S. Osher, H.V. Poor
    • Conference: GLOBECOM 2020-2020 IEEE Global Communications Conference
    • Pages: 1-6
    • Number of Citations: 11
    • Year: 2020

 

  1. Title: Tropical optimal transport and Wasserstein distances
    • Authors: W. Lee, W. Li, B. Lin, A. Monod
    • Journal: Information Geometry
    • Volume: 5
    • Issue: 1
    • Pages: 247-287
    • Number of Citations: 9
    • Year: 2022

 

  1. Title: Random features for high-dimensional nonlocal mean-field games
    • Authors: S. Agrawal, W. Lee, S.W. Fung, L. Nurbekyan
    • Journal: Journal of Computational Physics
    • Volume: 459
    • Pages: 111136
    • Number of Citations: 7
    • Year: 2022

 

.

Usman Farooq | Heterogeneous Catalysis | Best Researcher Award

Mr. Usman Farooq | Heterogeneous Catalysis | Best Researcher Award

Dr at Henan University, China

A dedicated professional with extensive experience in research and academia, seeking opportunities to utilize expertise and continue learning in advanced technologies. Dr. Farooq holds a Ph.D. in Environmental Science and Engineering from East China University of Science and Technology and has served as a postdoctoral scholar at Henan University. With hands-on experience in analytical techniques for heterogeneous catalysts, he has authored several notable research papers in reputable scientific journals.

Profile

Education šŸ“š

Ph.D. in Environmental Science and Engineering, East China University of Science and Technology, Shanghai, China. (September 2015 ā€” July 2019), M.Sc. in Chemical Engineering, University of Engineering and Technology Lahore, Pakistan. (September 2010 ā€” December 2013), B.Sc. in Chemical Engineering, University of Engineering and Technology Lahore, Pakistan. (August 2005 ā€” September 2009)

Employment History šŸ’¼

Postdoctoral at School of Chemistry and Molecular Sciences, Henan University, Kaifeng, China. (December 2019 ā€” Present), Projects focused on synthesis of heterogeneous supported nanocomposites and transport of antibiotics through porous media., Lecturer at Department of Chemical Engineering, University of Gujrat, Pakistan. (November 2009 ā€” August 2015), Taught undergraduate and master courses, conducted experiments, and supervised final year projects.

Personal Details ā„¹ļø

  • Phone: +86-18321658693
  • Email: usmanfarooq@henu.edu.cn
  • Date of Birth: October 10, 1986
  • Nationality: Pakistani
  • Marital Status: Married
  • WeChat ID: usman-henu

Skills šŸ’”

  • Teamwork
  • Communication
  • Heterogeneous Catalysis
  • Catalyst Characterization
  • Languages: English, Chinese, Urdu

Projects/Achievements šŸ…

Received awards and recognition for outstanding contributions, including postdoctoral startup funds and excellent postdoctoral award., Active involvement in various research projects related to environmental remediation and pollution treatment., Recognized as an Outstanding International Graduate of East China University of Science and Technology.

Courses Taught (international) šŸ“–

Introduction to Marine Science / Water Resource Engineering, Miami College of Henan University, Kaifeng, China. General Chemistry/ Physics, Zhejiang University of Technology International Summer School, China. Calculus I/Calculus II, Zhejiang University of Technology International Summer School, China.

Publications Top Notes šŸ“

  1. Title: Heightening effects of cysteine on degradation of trichloroethylene in Fe3+/SPC process
    • Authors: U. Farooq, F. Wang, J. Shang, M. Zeeshan Shahid, W. Akram, X. Wang
    • Journal: Chemical Engineering Journal (SCI äø€åŒŗ)
    • Year: 2023
    • Volume: 454
    • Page: 139996
    • DOI: 10.1016/j.cej.2022.139996
    • Citations: Not provided

 

  1. Title: How do CuO sheets (shCuO) enable efficient chlorinated hydrocarbon removal?
    • Authors: U. Farooq, F. Wang, M.M.A. Aslam, X. Wang
    • Journal: Journal of Water Process Engineering (SCI äŗŒåŒŗ)
    • Year: 2022
    • Volume: 50
    • Page: 103204
    • DOI: 10.1016/j.jwpe.2022.103204
    • Citations: Not provided

 

  1. Title: Study the activation mechanism of peroxymonosulfate in iron copper systems for trichloroethane degradation
    • Authors: U. Farooq, F. Wang, M.K. Shahzad, K.C. Carroll, S. Lyu, X. Wang
    • Journal: Chemical Engineering Journal Advances
    • Year: 2022
    • Volume: 11
    • Page: 100343
    • DOI: 10.1016/j.ceja.2022.100343
    • Citations: Not provided

 

  1. Title: Role of Cysteine in Enhanced Degradation of Trichloroethane under Ferrous Percarbonate System
    • Authors: U. Farooq, M. Sajid, A. Shan, X. Wang, S. Lyu
    • Journal: Chemical Engineering Journal (SCI äø€åŒŗ)
    • Year: 2021
    • Volume: 423
    • Page: 130221
    • DOI: 10.1016/j.cej.2021.130221
    • Citations: Not provided

 

  1. Title: A recyclable polydopamine-functionalized reduced graphene oxide/Fe nanocomposite (PDA@Fe/rGO) for the enhanced degradation of 1,1,1-trichloroethane
    • Authors: U. Farooq, J. Zhuang, X. Wang, S. Lyu
    • Journal: Chemical Engineering Journal (SCI äø€åŒŗ)
    • Year: 2021
    • Volume: 403
    • Page: 126405
    • DOI: 10.1016/j.cej.2020.126405
    • Citations: Not provided

 

  1. Title: Graphene oxide supported magnetic nanocomposite (Fe3O4/rGO); an effective source for oxidative degradation
    • Authors: U. Farooq, J. Zhuang, F. Wang, J. Chen, X.Wang
    • Journal: Chemical Research 化学ē ”ē©¶ę²³å—大学
    • Year: 2020
    • Pages: 1008ā€“1011
    • DOI: 10.14002/j.hxya.2020.06.008
    • Citations: Not provided
  2. Title: The impact of surface properties and dominant ions on the effectiveness of G-nZVI heterogeneous catalyst for environmental remediation
    • Authors: U. Farooq, M. Danish, S. Lyu, M.L.M.L. Brusseau, M. Gu, W.Q. Zaman, Z. Qiu, Q. Sui
    • Journal: Science of The Total Environment (SCI äø€åŒŗ)
    • Year: 2019
    • Volume: 651
    • Pages: 1182ā€“1188
    • DOI: 10.1016/j.scitotenv.2018.09.148
    • Citations: Not provided

 

  1. Title: A step forward towards synthesizing a stable and regeneratable nanocomposite for remediation of trichloroethene
    • Authors: U. Farooq, M. Danish, S. Lu, M. Naqvi, Z. Qiu, Q. Sui
    • Journal: Chemical Engineering Journal (SCI äø€åŒŗ)
    • Year: 2018
    • Volume: 347
    • Pages: 660ā€“668
    • DOI: 10.1016/j.cej.2018.04.120
    • Citations: Not provided

 

  1. Title: Efficient transformation in characteristics of cations supported-reduced graphene oxide nanocomposites for the destruction of trichloroethane
    • Authors: U. Farooq, M. Danish, S. Lu, M. Naqvi, X. Fu, X. Zhang, Q. Sui, Z. Qiu
    • Journal: Applied Catalysis A-General (SCI äŗŒåŒŗ)
    • Year: 2017
    • Volume: 544
    • Pages: 10ā€“20
    • DOI: 10.1016/j.apcata.2017.07.007
    • Citations: Not provided

 

  1. Title: Synthesis of nZVI@reduced graphene oxide: an efficient catalyst for degradation of 1,1,1-trichloroethane (TCA) in percarbonate system
    • Authors: U. Farooq, M. Danish, S. Lu, M. Naqvi, X. Gu, X. Fu, X. Zhang, M. Nasir
    • Journal: Research on Chemical Intermediates (SCI äø‰åŒŗ)
    • Year: 2017

 

.