64 / 100

Assoc. Prof. Dr. Xueqing Xu | Materials Science | Best Researcher Award

Materials Science |Ā  associate professor at Northwest Normal University , China

Xueqing Xu is a researcher and lecturer at the School of Chemistry and Chemical Engineering, Northwest Normal University. She completed her Ph.D. at Harbin Institute of Technology in 2021, where she gained extensive knowledge in the field of chemistry and material science. Xuā€™s primary focus is the design of multifunctional MOF (Metal-Organic Framework)-based nano/micromaterials with a specific emphasis on their applications in electromagnetic wave absorption/shielding and photocatalysis. These innovative materials have significant potential in various industries, including environmental protection and energy conservation. As a dedicated scholar, Xu continues to contribute to the scientific community through her ongoing research and publications in prestigious journals. Her work has helped pave the way for more sustainable and efficient solutions in the realm of material science.

Publication Profile

Scopus

Educational Background šŸŽ“šŸ“š

Xueqing Xu earned her Ph.D. in Chemistry from Harbin Institute of Technology in 2021. During her doctoral studies, she focused on the development and applications of Metal-Organic Frameworks (MOFs) for a variety of uses, including electromagnetic wave absorption and photocatalysis. Prior to her Ph.D., she completed a bachelorā€™s and master’s degree in Chemistry, gaining a strong foundation in material science. Her education has provided her with comprehensive knowledge in chemical engineering, materials chemistry, and nanotechnology, which has greatly contributed to her current research trajectory. At present, she is a lecturer at Northwest Normal University, where she imparts her expertise to undergraduate and graduate students while continuing her research on advanced functional materials.

Ā Experience šŸ”¬šŸ“–

After completing her Ph.D. at Harbin Institute of Technology, Xueqing Xu took on the role of lecturer at the School of Chemistry and Chemical Engineering, Northwest Normal University. As a lecturer, Xu combines her research pursuits with teaching responsibilities, fostering a dynamic learning environment for students. Her research experience includes investigating the synthesis and application of MOF-based nano/micromaterials, with a particular focus on their electromagnetic wave absorption and photocatalytic properties. She has collaborated with experts in her field to further her understanding of materials chemistry. Xu’s professional experience is also marked by her active participation in scientific conferences, where she shares her research findings. Her career reflects a strong commitment to advancing material science and making practical contributions to sustainability and environmental science.

Honors & Awards šŸ†šŸŽ“

Throughout her academic career, Xueqing Xu has earned several honors for her dedication to research and innovation in the field of chemistry. In addition to receiving her Ph.D. from Harbin Institute of Technology in 2021, she has published several influential papers in peer-reviewed journals, earning recognition within the scientific community. While she is still early in her academic career, her research in electromagnetic wave absorption and photocatalysis has already shown promise and led to collaborations with top-tier institutions. Xu’s groundbreaking work with multifunctional MOF-based nano/micromaterials has the potential to revolutionize various sectors, including environmental and energy industries. Her contributions to material science have set her on a trajectory for continued recognition, including future awards in materials research, environmental science, and nanotechnology.

Research Interests šŸ”šŸ“Š

Xueqing Xuā€™s research interests revolve around the design and application of multifunctional Metal-Organic Framework (MOF)-based nano/micromaterials. Specifically, her work focuses on developing materials for electromagnetic wave absorption and shielding, with potential applications in communications and environmental protection. Additionally, Xu is exploring the use of these materials in photocatalysis, aiming to address critical challenges in environmental remediation and energy conservation. Her research aims to design highly efficient, sustainable, and cost-effective materials for these applications. Xuā€™s ongoing work emphasizes the importance of functional material design for practical solutions in industrial settings. By understanding the interaction between electromagnetic waves and materials, her research could pave the way for better technologies in electromagnetic compatibility and pollution control. Her contributions are important not only to theoretical chemistry but also to the real-world applications of advanced materials.

PublicationsšŸ“š

Title: Boosting the photocatalytic benzylamine oxidation and Rhodamine B degradation using Z-scheme heterojunction of NiFe2O4/rGO/Bi2WO6

Authors: H. Xi, Hui; H. Wang, Hui; D. Liu, Dan; Z. Yang, Zhiwang; Z. Lei, Ziqiang

Citations: 0

Year: 2025

Title: Fabrication of Z-scheme heterojunction of UCN/BWO for selective photocatalytic benzylamine oxidation

Authors: H. Xi, Hui; X. Xu, Xueqing; Q. Yang, Qian; Z. Yang, Zhiwang; Z. Lei, Ziqiang

Citations: 1

Year: 2024

Title: Synthesis of Zn0.2Cd0.8S/MoS2/rGO photocatalyst for efficient solar-driven selective organic conversion

Authors: H. Xi, Hui; B. Lv, Bolin; Q. Yang, Qian; Z. Yang, Zhiwang; Z. Lei, Ziqiang

Citations: 1

Year: 2024

Conclusion :

Dr. Xueqing Xu’s exceptional contributions to the development of multifunctional materials for electromagnetic wave absorption and photocatalysis, her academic excellence, and her passion for research and teaching position her as a highly deserving nominee for the Best Researcher Award. Her work holds significant potential for advancing both academic knowledge and practical applications, particularly in energy and environmental fields, making her an outstanding choice for this prestigious recognition.

 

Xueqing Xu | Materials Science | Best Researcher Award

You May Also Like