Sakthivel Ramalingam | Computer Science | Editorial Board Member

Assist. Prof. Dr. Sakthivel Ramalingam | Computer Science | Editorial Board Member

Vellore Institute of Technology Chennai | India

Assist. Prof. Dr. Sakthivel Ramalingamthe researcher’s work spans advanced control theory, nonlinear systems, and complex dynamical networks with a strong emphasis on cyber-physical security, resilient control design, and intelligent fuzzy systems. Their contributions focus on developing robust, finite-time, and event-triggered control and filtering strategies for Takagi–Sugeno fuzzy models, Markovian jump systems, networked control systems, and multi-agent networks subjected to uncertainties, delays, cyber attacks, actuator faults, and communication constraints. Their research advances include designing synchronization mechanisms for fractional-order systems, creating hybrid-triggered and observer-based state estimation methods, and proposing fault-tolerant and non-fragile control algorithms for large-scale intelligent systems. With more than thirty-eight SCIE-indexed publications in high-impact journals such as IEEE Transactions on Fuzzy Systems, Neural Networks, Communications in Nonlinear Science and Numerical Simulation, Applied Mathematics and Computation, Nonlinear Dynamics, and the Journal of the Franklin Institute, their work significantly contributes to resilient autonomous systems, intelligent vehicles, stochastic complex networks, and distributed optimization. Their research extends to sampled-data control, interval type-2 fuzzy systems, polynomial fuzzy models, semi-Markovian jump systems, and fractional-order complex networks. They also engage in experimental validation, synchronization analysis, and stability theory, aiming to enhance the reliability, safety, and robustness of modern intelligent systems in uncertain and adversarial environments.

Featured Publications

Sakthivel, R., Sakthivel, R., Kaviarasan, B., & Alzahrani, F. (2018). Leader-following exponential consensus of input saturated stochastic multi-agent systems with Markov jump parameters. Neurocomputing, 287, 84–92.

Sakthivel, R., Sakthivel, R., Kaviarasan, B., Lee, H., & Lim, Y. (2019). Finite-time leaderless consensus of uncertain multi-agent systems against time-varying actuator faults. Neurocomputing, 325, 159–171.

Sakthivel, R., Sakthivel, R., Nithya, V., Selvaraj, P., & Kwon, O. M. (2018). Fuzzy sliding mode control design of Markovian jump systems with time-varying delay. Journal of the Franklin Institute, 1–15.

Sakthivel, R., Kwon, O. M., Park, M. J., Choi, S. G., & Sakthivel, R. (2021). Robust asynchronous filtering for discrete-time T–S fuzzy complex dynamical networks against deception attacks. IEEE Transactions on Fuzzy Systems, 30(8), 3257–3269.

Mehdi Saadallah | Computer Science | Best Researcher Award

Mr. Mehdi Saadallah | Computer Science
| Best Researcher Award

Vrije Universiteit Amsterdam | Netherlands

Mr. Mehdi Saadallah research focuses on advancing the integration of artificial intelligence (AI) and automation in cybersecurity operations, emphasizing the intersection between technology, human behavior, and organizational structures. It investigates how AI-driven tools influence professional identity, decision-making, and collaboration within Security Operations Centers (SOCs), where analysts and algorithms coexist in dynamic threat environments. By applying frameworks such as Paradox Theory, Organizational Routine Theory, and Identity Work Theory, the work uncovers the tensions, adaptations, and emergent practices that arise when automation transforms traditional cybersecurity routines. Empirical insights are drawn from multinational enterprises across diverse sectors, revealing how organizations balance efficiency, control, and trust in AI-augmented defense systems. The research also develops conceptual and operational models for AI-assisted vulnerability management and SOC modernization, providing a blueprint for improving detection, response, and resilience in complex digital ecosystems. Beyond theory, it delivers applied innovations that enhance cybersecurity governance, human–AI trust calibration, and automation ethics. Through interdisciplinary methods combining qualitative inquiry, computational analysis, and organizational modeling, the work contributes to redefining cybersecurity as a socio-technical discipline—bridging academic rigor and industrial application to guide the future of intelligent, adaptive, and human-centered cyber defense frameworks.

Featured Publications

Saadallah, M. (2025). Harmonizing paradoxical tensions in SOCs: A strategic model for integrating AI, automation, and human expertise in cyber defense and incident response. In Proceedings of the 58th Hawaii International Conference on System Sciences (HICSS-58). https://doi.org/10.24251/HICSS.2025.723

Saadallah, M., Shahim, A., & Khapova, S. (2025). Reconciling tensions in Security Operations Centers: A Paradox Theory approach. Big Data and Cognitive Computing, 9(11), 278. https://doi.org/10.3390/bdcc9110278

Saadallah, M., Shahim, A., & Khapova, S. (2025). Optimizing AI and human expertise integration in cybersecurity: Enhancing operational efficiency and collaborative decision-making. PriMera Scientific Engineering, 6(1), 177. https://doi.org/10.56831/psen-06-177

Saadallah, M., Shahim, A., & Khapova, S. (2024). Multi-method approach to human expertise, automation, and artificial intelligence for vulnerability management. In Advances in Intelligent Systems and Computing (pp. xxx–xxx). Springer. https://doi.org/10.1007/978-3-031-65175-5_29

 Saadallah, M., Shahim, A., & Khapova, S. (2024). Synergizing human expertise, automation, and artificial intelligence for vulnerability management. PriMera Scientific Engineering, 5(10), 160. https://doi.org/10.56831/psen-05-160

Vikas Verma | Computer Science | Young Scientist Award

Mr. Vikas Verma | Computer Science
| Young Scientist Award

The ICFAI University, Jaipur | India

Dr. Vikas Verma’s research contributions focus extensively on Software Defined Networking (SDN), Machine Learning, and Network Optimization, emphasizing energy efficiency, intelligent routing, and data-driven automation. His doctoral research, “Flow Classification and Energy Efficient Routing in Software Defined Networks Using Machine Learning Techniques,” explores the integration of adaptive algorithms for sustainable network management. His projects, including “Routing Optimization for Software-Defined Networking Using Machine Learning Techniques and Multi-Domain Controller” and “Industry-Academia Collaboration of SME with Academics,” demonstrate practical applications of AI in networking and innovation ecosystems. Dr. Verma’s publications in high-impact journals and conferences, such as the Philippine Journal of Science, Suranaree Journal of Science and Technology, IEEE Xplore, and Springer CCIS, address key advancements in SDN, IoT-based smart farming, and quantum communication security. His work “Energy-Efficient Techniques in SDN: Software, Hardware, and Hybrid Approaches” and “Comparative Analysis of Quantum Key Distribution Protocols” highlight optimization in computing systems and secure data transmission. Additionally, he holds two UK design patents—one for an AI-driven finance management device and another for a medical diagnostic system using saliva-based biomarkers. His current research extends to privacy preservation, intelligent traffic classification, and predictive analytics, establishing his expertise in sustainable and secure intelligent network systems.

Featured Publications

Verma, V., & Jain, M. (2024). Energy-efficient techniques in SDN: Software, hardware, and hybrid approaches. Philippine Journal of Science, 153(1).

Agarwal, N., & Verma, V. (2023). Comparative analysis of quantum key distribution protocols: Security, efficiency, and practicality. In Proceedings of the International Conference on Artificial Intelligence of Things (pp. 151–163).

Verma, V., Ramakant, Mathur, H., & Agarwal, N. (2022). IoT assisted smart farming using data science techniques. In 2022 IEEE World Conference on Applied Intelligence and Computing (AIC). IEEE.

Verma, V. (2017). Automatic mood classification of Indian popular music. International Journal for Research in Applied Science and Engineering.

Verma, V., & Jain, M. (2023). Optimization of routing using traffic classification in software defined networking. Suranaree Journal of Science and Technology, 30(1), 010198(1–8).*