ANUSH PRABHAKARAN |power electronics| Best Researcher Award

Mr. ANUSH PRABHAKARAN |power electronics| Best Researcher Award

Anush Prabhakaran is a seasoned power electronics engineer with expertise in designing and implementing DC-AC and AC-DC converters for industrial applications. With a strong background in system architecture and safety-critical systems, he has successfully led technical initiatives to optimize performance and reliability. His proficiency spans power electronics design, MATLAB/Simulink simulations, enterprise architecture, and compliance with safety standards. Currently serving as Lead Engineer at Bosch Global Software Technologies, he has previously held key roles at Sunlux Technovations, Kumaraguru College of Technology, and ARM Technologies. Anush has contributed significantly to renewable energy projects, including solar power systems and industrial UPS designs. His innovative work has led to patents in electric vehicle charging and IoT-based voltage protection. Holding degrees in Power Electronics & Drives, Financial Management, and Electrical & Electronics Engineering, he combines technical acumen with leadership capabilities to drive advancements in power conversion technologies.

Profile

Scopus

Education 🎓

Master of Engineering – Power Electronics & Drives (2010)  Kumaraguru College of Technology. Master of Business Administration – Financial Management (2010)  Bharathiar University. Bachelor of Engineering – Electrical & Electronics (2008)  Sri Ramakrishna Institute of Technology

Experience 🧑‍🏫

Lead Engineer (Apr 2023 – Present)  Bosch Global Software Technologies Led system architecture for safety-critical power systems Reduced development cycles by 30% through optimized architecture Implemented MBSE methodologies, enhancing reliability by 40%. Assistant Manager – Embedded Systems (Jul 2022 – Mar 2023)  Sunlux Technovations Designed 5kW industrial UPS and phase-sequence detection converters Developed a 260W Flyback converter with advanced protection features. Assistant Professor – Hardware Engineering (Jun 2013 – May 2022)  Kumaraguru College of Technology. Designed DC-AC (1.5kW) and DC-DC (1kW) converters for motor control. Developed a 500W solar tracking system with micro-inverter technology. Engineer – Renewable Energy (May 2010 – Apr 2013)  ARM Technologies Led 150kW solar power projects with 96% reliability Specialized in grid-tied converters and AC-DC-AC systems

Research Interests 🔬

Anush Prabhakaran’s research centers on power electronics, energy conversion, and renewable energy systems. His work involves optimizing DC-AC and AC-DC converters, designing high-efficiency industrial UPS systems, and improving electric vehicle charging solutions. He has developed fractional-order PID controllers for sensorless motor control and explored machine learning for power system protection. His patents cover ultra-fast supercapacitor charging and IoT-based over/under voltage protection. Anush also focuses on MBSE methodologies to enhance power system reliability and grid-tied solar energy solutions to improve energy efficiency. His research integrates advanced simulation tools like MATLAB/Simulink to develop high-performance power conversion architectures.

🏆 Awards & Honors 🏆

Best Innovation Award  For contributions to power electronics and converter design. Early Career Research Excellence Award  Recognized for advancements in electric vehicle charging. Best Paper Award  For research on fractional-order PID controllers in motor control. Top Performer Recognition  At Bosch Global Software Technologies for reducing development cycles. Academic Excellence Award  During M.E. studies at Kumaraguru College of Technology

Publications 📚

1️⃣ Fractional Order PID Controller with Hybrid Algorithm for IM Motor Control

2️⃣ Optimized Fractional Order PID Controller with Sensorless Speed Estimation

Conclusion 🏆

Anush Prabhakaran’s blend of industrial expertise, academic contributions, patents, and publications in power electronics makes him a strong candidate for the Best Researcher Award. His research in renewable energy, electric vehicles, and safety-critical power systems aligns with current industry advancements. Strengthening his publication record in top-tier journals and expanding research collaborations would further enhance his standing as a top researcher in his field.

Abdelhakim Tabine | lithium ion batteries | Best Innovation Award

Dr. Abdelhakim Tabine | lithium ion batteries | Best Innovation Award

 l’Université Chouaib Doukkali, Morocco

Abdelhakim Tabine, 41 years old, is an engineer and doctoral researcher in lithium-ion battery technology. He holds extensive technical expertise in electronics, automation, and signal processing. With a career beginning in 2005, he is currently pursuing advanced research in the energy sector. His academic and practical experience in fields like electrical engineering, signal treatment, and industrial systems have equipped him with a strong foundation for contributing to the future of energy storage solutions.

Profile

Scopus

Orcid

🎓 Education

Abdelhakim Tabine earned a Bachelor’s degree in Physics, Electronics, and Automation from the Faculty of Sciences of El Jadida. He continued his studies with a Master’s degree in Electrical Engineering, specializing in Signal Processing and Industrial Computing at the Faculty of Sciences and Techniques of Settat. His final-year projects included detailed research in system control and digital measurement principles, complementing his theoretical knowledge with practical insights in electrical automation.

💼 Experience 

Abdelhakim has gained practical experience through various internships and projects, notably at OCP (El Jadida), where he studied digital control systems and critical electrical infrastructure like power plants. His professional expertise spans areas such as power electronics, signal processing, embedded systems, and industrial sensors. Abdelhakim has contributed to multiple projects in automation, electronics, and renewable energy solutions, positioning him as a skilled engineer and researcher in the lithium-ion battery field.

🏆 Awards and Honors 

Throughout his academic career, Abdelhakim Tabine has been recognized for his work in electrical engineering and signal processing. His research in digital control systems and energy systems has earned praise, particularly for his analysis of power plants and solutions to system control challenges. As a researcher in lithium-ion battery technology, he has also been acknowledged for his contributions to the energy sector, receiving various academic accolades and recognition for his technical expertise.

🔬 Research Focus

Abdelhakim’s research centers on lithium-ion batteries, with a focus on enhancing energy storage systems. His work includes investigating efficient charging, performance improvement, and optimizing battery management systems for various applications. Additionally, he explores the integration of advanced signal processing and industrial sensors in energy systems. Abdelhakim’s goal is to contribute to the development of sustainable, high-performance energy storage solutions, paving the way for greener and more efficient technologies in the future.

Conclusion 

TABINE Abdelhakim is a promising researcher with an outstanding foundation in engineering and innovation. His work in lithium-ion batteries, coupled with his expertise in industrial automation and signal processing, places him in an excellent position to contribute to advancements in energy technology. While there is room for further growth in exploring more specialized and interdisciplinary research areas, his current trajectory suggests significant potential for making groundbreaking contributions in his field. Therefore, he is a strong candidate for the Best Innovation Award.

Publication

    1. Title: Innovative method to precise SOC estimation for lithium-ion batteries under diverse temperature and current conditions
      Authors: Tabine, A., Laadissi, E.M., Elachhab, A., Bouzaid, S., Hajjaji, A.
      Journal: International Journal of Hydrogen Energy
      Year: 2024
      Volume: 96, pp. 1299–1309
      Citations: 0

     

    1. Title: A novel fitting polynomial approach for an accurate SOC estimation in Li-ion batteries considering temperature hysteresis
      Authors: Tabine, A., Laadissi, E.M., Elachhab, A., Ennawaoui, C., Hajjaji, A.
      Journal: e-Prime – Advances in Electrical Engineering, Electronics and Energy
      Year: 2024
      Volume: 10, 100822
      Citations: 1

     

    1. Title: Deep learning and data augmentation for robust battery state of charge estimation in electric vehicles
      Authors: Elachhab, A., Laadissi, E.M., Tabine, A., Hajjaji, A.
      Journal: Electrical Engineering
      Year: 2024
      Volume: 117664
      Citations: 0

Zhiyu Mao | Electrochemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Zhiyu Mao | Electrochemical Engineering | Best Researcher Award

Associate Researcher at Dalian Institute of Chemical Physics Chinese Academy of Sciences, China

Dr. Zhiyu Mao, Associate Professor at the Dalian Institute of Chemical Physics (CAS), China, is a distinguished researcher specializing in electrochemical energy storage systems and materials. He holds a Ph.D. in Chemical Engineering from the University of Waterloo, Canada, with expertise in lithium-ion batteries, fuel cells, and lead-carbon batteries. His research focuses on developing advanced materials and technologies for energy storage and electric vehicles, leveraging artificial intelligence for battery management systems. With over 9 years of experience in both academia and industry, Dr. Mao has contributed significantly to the development of high-performance electrochemical systems and holds multiple patents.

Profile

Scopus

🎓 Education 

Dr. Zhiyu Mao earned his Ph.D. in Chemical Engineering from the University of Waterloo, Canada, in 2016. Before that, he completed his M.Sc. in Chemical Engineering at Taiyuan University of Technology, China, in 2011, and his B.Sc. in Materials Chemistry from Inner Mongolia University, China, in 2008. His academic background laid a strong foundation for his career in electrochemical engineering and energy storage technologies.

💼 Experience

Dr. Mao’s professional journey spans academia and industry. He is an Associate Professor at the Dalian Institute of Chemical Physics, CAS, and has previously held roles as a Research Scientist at CWZE Power Inc. and Newtech Power Inc., Waterloo, Canada. He has led research projects on advanced battery systems, supervised graduate students, and contributed to the development of innovative technologies for electric vehicles and renewable energy storage. His industry experience includes the design, testing, and commercialization of high-performance lithium-ion and lead-carbon batteries.

🏆 Awards & Honors

Dr. Mao has received several prestigious awards including the Canada Mitacs-Accelerate Award (2017-2019), Doctoral Thesis Completion Award (University of Waterloo, 2016), and the International Doctoral Student Award (University of Waterloo, 2013-2015). He also won the Second Prize for 18650 Lithium-ion Battery R&D from Tianjin Lishen Battery Co., China, in 2012. His recognition reflects his significant contributions to electrochemical energy storage research and development.

🔬 Research Focus

Dr. Mao’s research revolves around electrochemistry, with a particular focus on the development of advanced materials and systems for energy storage, including lithium-ion and lead-carbon batteries. His work also explores the aging processes in batteries, failure mechanisms, and the use of artificial intelligence for battery management systems in electric vehicles. Additionally, Dr. Mao investigates the integration of renewable energy storage into smart energy grids and the optimization of electrochemical systems for enhanced performance and longevity.

🔍Conclusion

Dr. Zhiyu Mao’s outstanding research in electrochemical energy storage, coupled with his leadership in high-impact projects, makes him a prime candidate for the Best Researcher Award. His continuous efforts to advance battery technologies, combined with his academic and industrial experience, position him as a significant contributor to the future of renewable energy and electric vehicle technologies. With further collaboration and commercialization of his innovations, Dr. Mao’s work has the potential to revolutionize energy storage systems globally.

📚Publications 

  1. Significant Enhancement of Electrocatalytic Activity of Nickel-Based Amorphous Zeolite Imidazolate Frameworks for Water Splitting at Elevating Temperatures
    • Authors: Iqbal, M.F., Xu, T., Li, M., Xu, P., Chen, Z.
    • Journal: ACS Applied Energy Materials
    • Volume: 7
    • Issue: 11
    • Pages: 4845–4855
    • Year: 2024
    • Citations: 1

 

  1. Optimizing Annealing Treatment of Mesoporous MoO2 Nanoparticles for Enhancement of Hydrogen Evolution Reaction
    • Authors: Iqbal, M.F., Xu, T., Li, M., Zhang, J., Chen, Z.
    • Journal: International Journal of Hydrogen Energy
    • Volume: 61
    • Pages: 377–386
    • Year: 2024
    • Citations: 1

 

  1. A Hybrid Deep Learning Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Discharging Fragments
    • Authors: Liu, Y., Hou, B., Ahmed, M., Feng, J., Chen, Z.
    • Journal: Applied Energy
    • Volume: 358
    • Pages: 122555
    • Year: 2024
    • Citations: 6

 

  1. A Review on Iron-Nitride (Fe2N) Based Nanostructures for Electrochemical Energy Storage Applications: Research Progress, and Future Perspectives
    • Authors: Sajjad, M., Zhang, J., Mao, Z., Chen, Z.
    • Journal: Journal of Alloys and Compounds
    • Volume: 976
    • Article: 172626
    • Year: 2024
    • Citations: 10

 

  1. Long-Life Lead-Carbon Batteries for Stationary Energy Storage Applications
    • Authors: Sajjad, M., Zhang, J., Zhang, S., Mao, Z., Chen, Z.
    • Journal: Chemical Record
    • Volume: 24
    • Issue: 3
    • Article: e202300315
    • Year: 2024
    • Citations: 8