Ferdib Al Islam | Machine Learning | Excellence in Research

Mr. Ferdib Al Islam | Machine Learning | Excellence in Research

Assistant Professor, Northern University of Business and Technology Khulna Bangladesh

Ferdib-Al-Islam is an Assistant Professor at Northern University of Business and Technology Khulna, Bangladesh. He holds a Master’s and Bachelor’s degree in Computer Science and Engineering from Khulna University of Engineering & Technology (KUET) and Bangabandhu Sheikh Mujibur Rahman Science and Technology University (BSMRSTU), respectively. His research expertise encompasses Machine Learning, Deep Learning, IoT, Data Science, and Computer Vision. Ferdib’s career includes experience as a software engineer in IoT R&D and lecturer roles, contributing significantly to academic and research pursuits.

Publication Profile

Google Scholar

🎓 Education

M.Sc. Eng. in Computer Science and Engineering from KUET (2023) – GPA: 3.50. B.Sc. Eng. in Computer Science and Engineering from BSMRSTU (2018) – GPA: 3.55. HSC in Science from Govt. PC College, Bagerhat (2012) – 5.00. SSC in Science from Bagerhat Govt. Secondary School (2010) – 5.00

💼 Experience

Ferdib has progressed from an intern to a Senior Lecturer, and now an Assistant Professor at Northern University of Business and Technology Khulna. He served as a Lecturer in Computer Science and Engineering from March 2020 to January 2024. His career also includes a Jr. Software Engineer role at W3 Engineers Ltd. in the IoT R&D sector. Ferdib brings practical industry experience into his academic roles, fostering innovation and research.

🏆 Awards & Honors

Ferdib has earned notable accolades, including the Gold Award at Semarak International Research Article Competition III 2024 for his work on Autism Spectrum Disorder detection. He also received the Best Paper Award at ICETIS 2021 for his research on Diabetes Mellitus prediction and the Honorable Mention Award at BDML 2020 for his IoT-based health monitoring tool.

🔬 Research Focus

Ferdib’s primary research interests are in Machine Learning, Deep Learning, IoT, Large Language Models, and Computer Vision. His work focuses on the application of AI techniques to healthcare, predictive modeling, and intelligent systems. His aim is to leverage machine learning for real-world applications like healthcare diagnostics, smart monitoring systems, and data-driven insights in various fields.

Conclusion

Ferdib Al-Islam is an exceptional researcher with notable accomplishments in machine learning, deep learning, and IoT. His commitment to advancing knowledge in these areas, demonstrated by his numerous awards and research contributions, marks him as a leading figure in his field. However, fostering greater interdisciplinary collaborations and increasing his global academic presence will be beneficial for his continued growth as a researcher. He is undoubtedly a deserving candidate for the Excellence in Research award, given his dedication, achievements, and potential for further contributions to the scientific community.

Publication Top Notes

  • Prediction of Cervical Cancer from Behavior Risk Using Machine Learning Techniques
    • Year: 2021
    • Authors: L Akter, Ferdib-Al-Islam, MM Islam, MS Al-Rakhami, MR Haque
    • Citation: 73
  • An IoT Enabled Health Monitoring Kit Using Non-Invasive Health Parameters
    • Year: 2021
    • Authors: A Das, SD Katha, MS Sadi, Ferdib-Al-Islam
    • Citation: 31
  • Hepatocellular Carcinoma Patient’s Survival Prediction Using Oversampling and Machine Learning Techniques
    • Year: 2021
    • Authors: Ferdib-Al-Islam, L Akter, MM Islam
    • Citation: 21
  • An Enhanced Stroke Prediction Scheme Using SMOTE and Machine Learning Techniques
    • Year: 2021
    • Authors: Ferdib-Al-Islam, M Ghosh
    • Citation: 20
  • Early Identification of Parkinson’s Disease from Hand-drawn Images using Histogram of Oriented Gradients and Machine Learning Techniques
    • Year: 2020
    • Authors: Ferdib-Al-Islam, L Akter
    • Citation: 19
  • Dementia Identification for Diagnosing Alzheimer’s Disease using XGBoost Algorithm
    • Year: 2021
    • Authors: L Akter, Ferdib-Al-Islam
    • Citation: 17
  • COV-VGX: An automated COVID-19 detection system using X-ray images and transfer learning
    • Year: 2021
    • Authors: P Saha, MS Sadi, OFMRR Aranya, S Jahan, FA Islam
    • Citation: 9
  • Detection of Hepatitis C Virus Progressed Patient’s Liver Condition Using Machine Learning
    • Year: 2022
    • Authors: Ferdib-Al-Islam, L Akter
    • Citation: 6*
  • Diabetes Mellitus Prediction and Feature Importance Score Finding Using Extreme Gradient Boosting
    • Year: 2021
    • Authors: L Akter, Ferdib-Al-Islam
    • Citation: 4
  • COV-Doctor: A Machine Learning Based Scheme for Early Identification of COVID-19 in Patients
    • Year: 2022
    • Authors: Ferdib-Al-Islam, M Ghosh
    • Citation: 3*
  • Breast Cancer Risk Prediction Using Different Clustering Techniques
    • Year: 2022
    • Authors: L Akter, M Raihan, M Raihan, M Sarker, M Ghosh, N Alvi, Ferdib-Al-Islam
    • Citation: 3
  • Crop-RecFIS: Machine Learning Classifiers for Crop Recommendation and Feature Importance Scores Calculation
    • Year: 2023
    • Authors: MS Sanim, KM Hasan, MM Alam, MAA Walid, MR Islam
    • Citation: 2
  • Prediction of Dementia Using SMOTE Based Oversampling and Stacking Classifier
    • Year: 2023
    • Authors: Ferdib-Al-Islam, MS Sanim, MR Islam, S Rahman, R Afzal, KM Hasan
    • Citation: 2*
  • An Ensemble Learning Model to Detect COVID-19 Pneumonia from Chest CT Scan
    • Year: 2022
    • Authors: PC Shill
    • Citation: 2

 

 

 

Ming Xu | Spatio-Temporal Data Mining | Best Researcher Award

Assoc Prof Dr. Ming Xu | Spatio-Temporal Data Mining |Best Researcher Award

👨‍🏫Profile Summary

Ming Xu is an accomplished Associate Professor at Liaoning Technical University, specializing in computer science, particularly in transportation systems. With a Ph.D. from Beijing University of Posts and Telecommunications and a wealth of academic and research experience, Dr. Xu has made significant contributions to the field. He has authored numerous publications in prestigious journals and has been recognized with awards such as the World Artificial Intelligence Conference Youth Outstanding Paper Award. Dr. Xu’s expertise lies in learning to rank nodes in road networks, anomaly detection, traffic signal control, and traffic flow prediction using advanced data mining and deep learning techniques

🌐 Professional Profiles

 

  1. Orcid  Profile

📚Education 

PhD in Computer Science Beijing University of Posts and Telecommunications Duration: September 2010 – July 2015.  Master in Computer Science Shenyang Ligong University Duration: September 2005 – April 2008. Bachelor in Computer Science Liaoning Technical University Duration: September 1999 – 2003

👨‍💼Professional Service

  • Guest editor of special issue of Journal of Advanced Transportation (SCI)
  • Reviewer of IEEE Trans. on ITS\Physica A\ITSC

🏆 Awards

  • World Artificial Intelligence Conference Youth Outstanding Paper Award (2020)

🎓Academic experience

Associate Professor Software College, Liaoning Technical University Duration: October 2020 – Present. Postdoctoral position Tsinghua University Duration: February 2016 – February 2019

 

📚Top Noted Publication

    1. Title: MGL2Rank: Learning to Rank the Importance of Nodes in Road Networks Based on Multi-Graph Fusion
      • Authors: Ming Xu, Jing Zhang
      • Journal: Information Sciences
      • Status: In press
      • DOI: 10.1016/j.ins.2024.120472

     

    1. Title: Discovery of Critical Nodes in Road Networks through Mining from Vehicle Trajectories
      • Authors: Ming Xu, Jianping Wu, Mengqi Liu, Yunpeng Xiao, Haohan Wang, Dongmei Hu
      • Journal: IEEE Transactions on Intelligent Transportation Systems
      • Year: 2018
      • Volume: 20
      • Issue: 2
      • Pages: 583-593
      • Award: World Artificial Intelligence Conference Youth Outstanding Paper Award
      • Links: Award, Report

     

    1. Title: Anomaly Detection in Road Networks using Sliding-Window Tensor Factorization
      • Authors: Ming Xu, Jianping Wu, Haohan Wang, Mengxin Cao
      • Journal: IEEE Transactions on Intelligent Transportation Systems
      • Year: 2019
      • Volume: 20
      • Issue: 12
      • Pages: 4704-4713

     

    1. Title: Network-wide Traffic Signal Control based on Discovery of Critical Nodes and Deep Reinforcement Learning
      • Authors: Ming Xu, Jianping Wu, Ling Huang, Rui Zhou, Tian Wang, Dongmei Hu
      • Journal: Journal of Intelligent Transportation Systems
      • Year: 2020
      • Volume: 24
      • Issue: 1
      • Pages: 1-10

     

    1. Title: Traffic Flow Prediction with Rainfall Impact Using A Deep Learning Method
      • Authors: Yuhan Jia, Jianping Wu, Ming Xu
      • Journal: Journal of Advanced Transportation
      • Year: 2017

     

    1. Title: Charging Pile Siting Recommendations via the Fusion of Points of Interest and Vehicle Trajectories
      • Authors: Yuan Kong, Jianping Wu, Ming Xu, Kezhen Hu
      • Journal: China Communications
      • Year: 2017
      • Volume: 14
      • Issue: 11
      • Pages: 29-38

     

    1. Title: Rumor propagation dynamic model based on evolutionary game and anti-rumor
      • Authors: Yunpeng Xiao, Diqiang Chen, Shihong Wei, Qian Li, Haohan Wang, Ming Xu
      • Journal: Nonlinear Dynamics
      • Year: 2019
      • Volume: 95
      • Pages: 523-539

     

    1. Title: Leveraging longitudinal driving behaviour data with data mining techniques for driving style analysis
      • Authors: Geqi Qi, Yiman Du, Jianping Wu, Ming Xu
      • Journal: IET intelligent transport systems
      • Year: 2015
      • Volume: 9
      • Issue: 8
      • Pages: 792-801

     

    1. Title: Emission pattern mining based on taxi trajectory data in Beijing
      • Authors: Tingting Li, Jianping Wu, Anrong Dang, Lyuchao Liao, Ming Xu
      • Journal: Journal of cleaner production
      • Year: 2019
      • Volume: 206
      • Pages: 688-700

     

    1. Title: 3-HBP: A three-level hidden Bayesian link prediction model in social networks
      • Authors: Yunpeng Xiao, Xixi Li, Haohan Wang, Ming Xu, Yanbing Liu
      • Journal: IEEE Transactions on Computational Social Systems
      • Year: 2018
      • Volume: 5
      • Issue: 2
      • Pages: 430-443