Ms. Nabila Tabassum | Chemical Engineering
| Excellence in Research Award
Ms. Nabila Tabassum research trajectory focuses on the intersection of computational materials science, catalysis, and high-temperature materials engineering, emphasizing atomistic simulations and experimental validation for sustainable technological advancement. The work encompasses Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations for understanding the structural, mechanical, and thermal behavior of High Entropy Alloys (HEAs), High Entropy Ceramics (HECs), and High Entropy Oxides (HEOs), specifically for applications in thermal barrier coatings and energy systems. The studies explore thermal stability, phase transformations, and electronic properties of multi-component alloys such as AlCoCrFeNi, contributing to the prediction of thermodynamic behavior and optimization of mechanical strength under extreme conditions. Experimental research complements computational findings through synthesis, sintering, and characterization of high entropy materials, bridging modeling with practical performance. Additional work includes catalytic conversion of ethanol and methanol into hydrocarbons, glycerol reforming for hydrogen generation, and development of amine–ionic liquid-based solvents for CO₂ capture, aligning with global sustainability goals. The outcomes, disseminated through peer-reviewed journals, book chapters, and international conferences, demonstrate a cohesive integration of computational chemistry, thermomechanical modeling, and green energy research, advancing the understanding and design of next-generation materials for energy-efficient and environmentally resilient applications.
Profile: Scopus
Featured Publication
Tabassum, N. (2025). Thermal stability assessment of mixed phase AlCoCrFeNi high entropy alloy: In silico studies. Physica B: Condensed Matter. https://doi.org/[Insert DOI if available]