Dr. Arash Pakravesh | Physical Chemistry
| Editorial Board Member
Bu-Ali Sina university | Iran
Dr. Arash Pakravesh research focuses extensively on advancing thermodynamic modeling through the development, refinement, and application of SAFT-type equations of state, particularly for complex fluids, supercritical systems, and industrially relevant mixtures. Key contributions include the PρT parameterization of the SAFT equation of state, which introduces an optimized framework for improving accuracy in density, pressure, and temperature predictions across diverse fluid conditions. Additional investigations examine the thermodynamic behavior of supercritical hydrogen using both cubic and SAFT-type models, offering insights essential for hydrogen storage, transportation, and energy technologies. Comparative evaluations involving friction theory, free-volume theory, entropy scaling, and Helmholtz energy scaling viscosity models further demonstrate how coupling these models with PρT-SAFT enhances prediction reliability for ethylene glycols and alkanolamine mixtures. Significant work also explores the modeling of pure, binary, and ternary mixtures of alkanolamines using multiple SAFT versions, contributing valuable data for chemical engineering processes such as gas treatment and solvent design. Moreover, upcoming studies assess the performance of PρT-SAFT, PC-SAFT, CPA, and related equations of state for predicting density, heat capacity, compressibility, speed of sound, and vapor pressure in pure ethylene glycols and their mixtures, collectively advancing the broader understanding of molecular thermodynamics in engineering science.
Profile: Scopus | Orcid | ResearchGate
Featured Publications
Pakravesh, A. (2025). A review of cubic and statistical associating fluid theory equations of state for modeling supercritical hydrogen. Green Technology & Innovation. https://doi.org/10.36922/GTI025290010
Pakravesh, A. (2025). From molecules to industry: The expanding role of SAFT equation of state in engineering science. Clareus Scientific Science and Engineering.
Pakravesh, A., Mohammadi, A. H., & Richon, D. (2025). Modeling of supercritical hydrogen thermodynamic properties using cubic and SAFT type equations of state. The Journal of Supercritical Fluids. https://doi.org/10.1016/j.supflu.2025.106588