Mujeeb Abiola Abdulrazaq | engineering | Young Scientist Award

Mr. Mujeeb Abiola Abdulrazaq l engineering
| Young Scientist Award

University of North Carolina at Charlotte | United States

Mr. Mujeeb Abiola’s research focuses on advancing transportation safety and efficiency through data-driven methodologies and emerging technologies. His work extensively employs large-scale traffic and crash data, including millions of federal highway administration records, to investigate the spatiotemporal dynamics of pedestrian crashes and the evolution of crash hotspots. Utilizing advanced statistical and machine learning models, he has developed predictive frameworks that outperform traditional Highway Safety Manual standards, providing robust insights into risk factors and injury severity in both human-driven and autonomous vehicle contexts. His research on connected and autonomous vehicles (CAVs) has led to the development of traffic control algorithms that significantly enhance safety, operational efficiency, and environmental sustainability in freeway work zones. Furthermore, his studies integrate GPU-accelerated data processing, simulation-based optimization, and multi-level heterogeneity modeling to evaluate vulnerable road user behavior and assess dynamic collision risks. Through simulation platforms such as VISSIM and SUMO, combined with Python-based data analysis and GIS applications, his work systematically addresses complex traffic scenarios, including merging, diverging, and weaving segments, while also accounting for seasonal variations and temporal constraints in crash determinants. His contributions include empirical analyses of autonomous vehicle incidents, methodological advancements in microsimulation accuracy, and development of actionable strategies for real-world traffic management, ultimately aiming to improve roadway safety, inform policy, and guide evidence-based planning in modern transportation systems.

Profile:  Google Scholar 

Featured Publications

  • Abdulrazaq, M. A., & Fan, W. D. (2024). Temporal dynamics of pedestrian injury severity: A seasonally constrained random parameters approach. International Journal of Transportation Science and Technology, 9.

  • Abdulrazaq, M. A., & Fan, W. (2025). A priority based multi-level heterogeneity modelling framework for vulnerable road users. Transportmetrica A: Transport Science, 1–34. https://doi.org/10.1080/23249935.2025.2516817

  • Abdulrazaq, M. A., & Fan, W. (2025). Seasonal instability in crash determinants: A partially temporally constrained modeling analysis. SSRN 5341417. https://doi.org/10.2139/ssrn.5341417

Sheharyar Khan | Engineering | Young Scientist Award

Dr. Sheharyar Khan l Engineering
| Young Scientist Award

Shandong University | Pakistan

Dr. Sheharyar Khan is a distinguished computer scientist and software engineer with extensive expertise in software engineering, artificial intelligence, and cybersecurity, specializing in IoMT edge-cloud frameworks and network intrusion detection systems. Currently a Postdoctoral Research Fellow at Shandong University, he leads independent and collaborative research initiatives, designing experiments, analyzing data, and publishing findings in high-impact journals. His doctoral research at Northwestern Polytechnical University focused on optimization-based hybrid offloading frameworks for IoMT in edge-cloud healthcare systems, demonstrating the integration of advanced computing techniques with practical healthcare applications. Dr. Khan has made significant contributions to explainable AI and hybrid ensemble machine learning, as seen in publications such as “HCIVAD: Explainable hybrid voting classifier for network intrusion detection systems” and “Consensus hybrid ensemble machine learning for intrusion detection with explainable AI”. With prior experience as a lecturer and IT specialist, he combines academic rigor with practical software development expertise. Dr. Khan has 104 citations across 10 documents, an h-index of 6, an i10-index of 5, is indexed under Scopus Author ID 57221647889, and holds ORCID 0000-0002-0089-0168, reflecting his impact on the field. Recognized for his analytical skills, innovation, and interdisciplinary research, he continues to advance secure, intelligent, and explainable computing systems for both academic and real-world applications.

Profile: Scopus | Google Scholar | Orcid | Researchgate 

Featured Publications

Khan, S., Liu, S., Pan, L., & Mei, G. (2025). Optimization-based hybrid offloading framework for IoMT in edge-cloud healthcare systems. Future Generation Computer Systems, 108163. https://doi.org/

Ahmed, S. K. M. T. S., Jiangbin, Z., & Khan, S. (2025). HCIVAD: Explainable hybrid voting classifier for network intrusion detection systems. Cluster Computing, 28(343). https://doi.org/

Ahmed, M. T. S., Jiangbin, Z., & Khan, S. (2024). Consensus hybrid ensemble machine learning for intrusion detection with explainable AI. Journal of Network and Computer Applications, 5*. https://doi.org/

Khan, S., Jiangbin, Z., & Ali, H. (2024). Soft computing approaches for dynamic multi-objective evaluation of computational offloading: A literature review. Cluster Computing, 27(9), 12459–12481. https://doi.org/

Rafita Haque | Engineering | Best Researcher Award

Ms. Rafita Haque | Engineering | Best Researcher Award

Florida International University | United States

A highly motivated academic and researcher, this individual is currently pursuing a Ph.D. in Computer and Electrical Engineering, specializing in artificial intelligence, biomedical sensors, signal analysis, and data security. With a foundation built on degrees in Software Engineering and Computer Science and Engineering, their expertise bridges software development, academic teaching, and advanced research. Their professional background includes university-level teaching in computer science and software engineering, where they guided undergraduate students through core computing courses and research activities. In addition to academia, they have held positions as a Software Quality Assurance Engineer, where they contributed to the development and refinement of AML solutions for banking and insurance applications. Their scholarly work includes multiple peer-reviewed journal and conference publications indexed by Scopus, Springer, and Web of Science. Recognized with awards for both academic research and practical projects, they are committed to contributing to technological advancement in healthcare, artificial intelligence, and secure information systems.

Education 

Rafita Haque Currently enrolled in a Ph.D. program in Computer and Electrical Engineering, the individual is conducting research in artificial intelligence, biomedical devices, signal and data analysis, and cardiovascular health technologies. They previously completed a Master’s degree in Software Engineering, where the focus was on analyzing consumer information quality within social media platforms and its effect on purchase decisions. Their Master’s education emphasized management information systems and data analytics. Prior to that, they earned a Bachelor’s degree in Computer Science and Engineering, which included a final year project on developing a secure intra-university network system. Throughout their education, they have maintained strong academic performance and engaged in research aligned with cybersecurity, data analysis, and emerging digital technologies. They have also completed several professional training programs in networking, ASP.NET development, and cybersecurity, enhancing their technical proficiency and preparing them for both academic and industry challenges in the computing domain.

Experience 

Rafita Haque With diverse experience in both academia and industry, this individual has served as a lecturer in computer science and software engineering departments at two universities. Their teaching portfolio includes courses such as programming languages, operating systems design, numerical analysis, and theory of computing. In these roles, they mentored undergraduate students, supported research collaborations, and contributed to curriculum development. Prior to and alongside their academic roles, they worked as a Software Quality Assurance Engineer at prominent software firms, where they contributed to the design, testing, and enhancement of software systems used in financial and insurance institutions. Their technical expertise includes system validation, software error correction, and performance improvement using technologies such as ASP.NET, Python, MySQL, and NoSQL. These roles have provided them with a well-rounded professional profile, integrating both the theoretical rigor of academia and the applied problem-solving demands of the software industry.

Awards and Honors

This researcher has earned multiple recognitions for their academic excellence and research contributions. They received the Best Paper Award in the Internet of Things (IoT) category at an international technology and data science conference held in Malaysia. During undergraduate studies, they were awarded Best Project honors for developing a secure network management system designed for academic institutions. Their academic output has also led to invitations for presentations at notable forums, including national-level blockchain competitions. Their research has been published in several peer-reviewed journals and conference proceedings, many of which are indexed in Scopus, Web of Science, and Springer. These works address topics such as web application vulnerabilities, blockchain integration in healthcare systems, deep learning for heritage architecture, and the intersection of IoT with digital commerce. The recognition reflects not only the relevance of their work but also their ongoing commitment to advancing practical, interdisciplinary solutions in computing and health-related technologies.

Research Focus

This researcher’s work centers on the intersection of artificial intelligence, biomedical engineering, and data security. Their doctoral research explores the integration of AI with biomedical sensors and photoplethysmogram (PPG) signal analysis to develop innovative diagnostic tools for cardiovascular health monitoring. Their broader research interests also include secure data transmission in healthcare systems, especially using blockchain technology for electronic medical records. Previous contributions have investigated the role of digital consumer information, remote protocol integration, and signal processing for both medical and heritage architecture applications. By leveraging AI-driven approaches with secure data infrastructure, their research aims to enhance the reliability, accessibility, and security of digital health technologies. The interdisciplinary nature of their work allows them to address complex challenges in both technical and healthcare environments, positioning them at the forefront of intelligent systems development for improved human health and cybersecurity in medical data ecosystems.

Publications 

Title: Broken authentication and session management vulnerability: a case study of web application
Year: 2018
Citation Count: 48

Title: Blockchain-based information security of electronic medical records (EMR) in a healthcare communication system
Year: 2021
Citation Count: 36

Title: Integration of blockchain and remote database access protocol-based database
Year: 2020
Citation Count: 14

Title: Modeling the role of C2C information quality on purchase decision in Facebook
Year: 2018
Citation Count: 13

Title: A cloud of things (CoT) approach for monitoring product purchase and price hike
Year: 2021
Citation Count: 10

Title: Identification of construction era for Indian subcontinent ancient and heritage buildings by using deep learning
Year: 2020
Citation Count: 10

Conclusion

Rafita Haque stands out as a capable and emerging researcher whose contributions span a wide range of impactful areas at the intersection of AI and healthcare technologies. Her academic qualifications, research output, teaching roles, and industry engagement present a holistic view of a scholar committed to advancing science and technology. With her current trajectory and a strategic focus on deepening her expertise and publication impact, she is well-positioned to become a leading figure in her field. Overall, she is a deserving candidate for the Best Researcher Award, particularly within the category of early-career researchers who are demonstrating exceptional promise and innovation in multidisciplinary research.

Santos Kumar Das | Engineering | Best Researcher Award

Dr. Santos Kumar Das | Engineering | Best Researcher Award

Associate Professor at National Institute of Technology Rourkela, India

Dr. Santos Kumar Das, an Associate Professor at the Department of Electronics and Communication Engineering, National Institute of Technology (NIT) Rourkela, is an accomplished researcher with expertise in AI, IoT, Sensor Networking, and Optical Networking, including LiFi, FSO, and SDN. With a Ph.D. in Communication Networks from NIT Rourkela and an M.S. in Electrical Communication Engineering from IISc Bangalore, Dr. Das has an extensive academic and professional background. He has supervised 12 Ph.D., 53 M.Tech., and 54 B.Tech. theses and managed numerous government-funded research projects totaling over ₹671 lakh. A recipient of multiple awards, including the Best Research Paper Award at IoTCloud’21 and INDICON 2023, he has over 50 journal publications. Dr. Das is actively involved in academia as a reviewer, technical committee member, and conference session chair. His innovative contributions in 6G communication and IoT for societal applications make him a strong contender for the Best Researcher Award.

Professional Profile

Education

Dr. Santos Kumar Das has an impressive educational background, marked by a strong foundation in electronics and communication engineering. He completed his Ph.D. in Communication Networks from the National Institute of Technology (NIT), Rourkela, in 2014. Prior to that, he earned a Master of Science (M.S.) in Electrical Communication Engineering from the prestigious Indian Institute of Science (IISc), Bangalore, in 2002, graduating with first-class honors. Dr. Das also holds a Bachelor of Engineering (B.E.) degree in Electronics and Communication from VSSUT (formerly UCE), Burla, Odisha, completed in 1998, where he again achieved first-class honors. His academic journey began with a strong foundation in science during his higher secondary education at D.D. College, Keonjhar, Odisha, where he secured first-class marks. With this comprehensive educational background, Dr. Das has built a distinguished career in research and teaching, focusing on cutting-edge technologies in communications and networking.

Professional Experience

Dr. Santos Kumar Das has a diverse and extensive professional experience spanning academia, industry, and research. Currently serving as an Associate Professor at the Department of Electronics and Communication Engineering at NIT Rourkela since 2009, he has significantly contributed to the institution’s academic and research initiatives. Prior to his academic career, Dr. Das gained substantial industry experience as a Senior Software Engineer at Palvision and ITXpress in Singapore, where he worked on cutting-edge network systems and software development. He also held roles as a Software Engineer at Actatek and Network Engineer at Netmarks, contributing to advanced technological solutions in various sectors. In addition, Dr. Das worked as a Research Associate at CEMNet Lab, NTU Singapore, and as a Research Engineer at A-Star Singapore, where he was involved in high-impact research in communication networks and sensor technologies. His broad range of roles has enriched his expertise and research focus, particularly in IoT, AI, and Optical Networking.

Research Interest

Dr. Santos Kumar Das has a broad and innovative research focus, primarily centered around emerging technologies in communications and networking. His key research interests include Artificial Intelligence (AI), the Internet of Things (IoT), Sensor Networking, and Optical Networking, particularly focusing on cutting-edge technologies like LiFi, Free-Space Optics (FSO), and Software-Defined Networking (SDN). Dr. Das explores the integration of AI in IoT applications, aiming to enhance the intelligence and efficiency of network systems. His work in optical networking focuses on leveraging advanced communication techniques for high-speed data transmission and next-generation wireless systems, with a special emphasis on 6G communication technologies. He also investigates IoT-based smart city applications, environmental monitoring systems, and industrial IoT for better security, safety, and resource management. By combining AI with sensor networks and optical technologies, Dr. Das contributes to the development of sustainable, intelligent, and high-performance communication systems for both industrial and societal applications.

Award and Honor

Dr. Santos Kumar Das has received numerous prestigious awards and honors throughout his career, reflecting his excellence in research, teaching, and professional contributions. He was recognized as a Senior Member of IEEE in 2019, showcasing his standing in the global engineering community. Dr. Das has received multiple Best Paper Awards, including at the International Conference on Next Generation Computing Technologies (NGCT) in 2017, Electronic Systems and Intelligent Computing (ESIC) in 2020, and IoTCloud’21, III T Kottayam in 2021. He was also honored with the Best Faculty Advisor Award at NIT Rourkela in 2022 and 2023 for his outstanding guidance to students. Dr. Das’s leadership and contributions to academic committees have earned him recognition as an editorial board member and reviewer for multiple journals. Additionally, his involvement in technical committees and chairing sessions at international conferences, such as TENCON 2023 and SGCNSP 2023, further exemplify his significant impact in the field of engineering and technology.

Conclusion

Dr. Santos Kumar Das stands out as a highly accomplished researcher with a stellar record in academia, research, and mentorship. His contributions to IoT, AI, and advanced networking, coupled with his leadership in projects and professional service, make him an outstanding candidate for the Best Researcher Award. Addressing minor areas for improvement, such as broadening his research scope and enhancing global collaboration, could further solidify his position as a leader in the field. Overall, he is highly deserving of this recognition.

Publications Top Noted

  • A comprehensive review on deep learning-based methods for video anomaly detection
    Authors: R Nayak, UC Pati, SK Das
    Journal: Image and Vision Computing
    Year: 2021
    Citations: 268
  • Time series based air pollution forecasting using SARIMA and prophet model
    Authors: KKR Samal, KS Babu, SK Das, A Acharaya
    Conference: Proceedings of the 2019 International Conference on Information Technology
    Year: 2019
    Citations: 158
  • Multi-directional temporal convolutional artificial neural network for PM2.5 forecasting with missing values: A deep learning approach
    Authors: KKR Samal, KS Babu, SK Das
    Journal: Urban Climate
    Year: 2021
    Citations: 74
  • An improved pollution forecasting model with meteorological impact using multiple imputation and fine-tuning approach
    Authors: KKR Samal, AK Panda, KS Babu, SK Das
    Journal: Sustainable Cities and Society
    Year: 2021
    Citations: 47
  • Temporal convolutional denoising autoencoder network for air pollution prediction with missing values
    Authors: KKR Samal, KS Babu, SK Das
    Journal: Urban Climate
    Year: 2021
    Citations: 44
  • Swin transformer based vehicle detection in undisciplined traffic environment
    Authors: P Deshmukh, GSR Satyanarayana, S Majhi, UK Sahoo, SK Das
    Journal: Expert Systems with Applications
    Year: 2023
    Citations: 42
  • Critical review on slope monitoring systems with a vision of unifying WSN and IoT
    Authors: DK Yadav, S Jayanthu, SK Das, S Chinara, P Mishra
    Journal: IET Wireless Sensor Systems
    Year: 2019
    Citations: 36
  • Multi-output TCN autoencoder for long-term pollution forecasting for multiple sites
    Authors: KKR Samal, AK Panda, KS Babu, SK Das
    Journal: Urban Climate
    Year: 2021
    Citations: 35
  • Video-based real-time intrusion detection system using deep-learning for smart city applications
    Authors: R Nayak, MM Behera, UC Pati, SK Das
    Conference: 2019 IEEE International Conference on Advanced Networks and
    Year: 2019
    Citations: 32
  • A vehicle detection technique using binary images for heterogeneous and lane-less traffic
    Authors: GSR Satyanarayana, S Majhi, SK Das
    Journal: IEEE Transactions on Instrumentation and Measurement
    Year: 2021
    Citations: 31
  • Design of real-time slope monitoring system using time-domain reflectometry with wireless sensor network
    Authors: DK Yadav, G Karthik, S Jayanthu, SK Das
    Journal: IEEE Sensors Letters
    Year: 2019
    Citations: 31
  • Observation of multiphonon transverse wobbling in 133Ba
    Authors: KR Devi, S Kumar, N Kumar, FS Babra, MSR Laskar, S Biswas, S Saha, …
    Journal: Physics Letters B
    Year: 2021
    Citations: 30