Dr. Urosa Latief l Material science | Young Scientist Award
Indian Institute Of Technology Delhi| India
Dr. Urosa Latief’s research is centered on experimental condensed matter physics, with a strong emphasis on the synthesis, design, and functional optimization of advanced nanomaterials for sustainable energy and optoelectronic applications. Her work integrates nanotechnology with energy-efficient material development, focusing on environmentally friendly solid-state lighting (SSL) systems and flexible piezoelectric nanogenerators (PNGs) for energy harvesting. She has developed hybrid nanocomposites based on poly(vinylidene fluoride) integrated with functionalized multi-walled carbon nanotubes and barium titanate fillers to enhance piezoelectricity and output performance. In parallel, her studies on quantum dots and carbon-based nanostructures have led to significant advances in luminescent, multifunctional, and rare-earth-free phosphors for photonic and sensing applications. Through systematic material engineering, she has demonstrated the tunability of optical and electronic properties in ZnS and ZnO-based nanostructures, contributing to dual-mode sensors and high-efficiency light-emitting devices. Her research further explores nanocomposites for self-powered systems, integrating piezo-optical functionalities for next-generation wearable and flexible electronics. With several publications in reputed international journals and a strong interdisciplinary approach, her work contributes to the advancement of green energy technologies, nanophotonics, and smart material systems that bridge fundamental science with real-world applications.
Featured Publications
Latief, U., ul Islam, S., Khan, Z. M. S. H., & Khan, M. S. (2021). A facile green synthesis of functionalized carbon quantum dots as fluorescent probes for a highly selective and sensitive detection of Fe³⁺ ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 262, 120132. https://doi.org/10.1016/j.saa.2021.120132
Latief, U., Islam, S. U., Khan, Z., & Khan, M. S. (2022). Luminescent manganese/europium doped ZnS quantum dots: Tunable emission and their application as fluorescent sensor. Journal of Alloys and Compounds, 910, 164889. https://doi.org/10.1016/j.jallcom.2022.164889
Latief, U., Islam, S. U., & Khan, M. S. (2023). Rare-earth free solid-state fluorescent carbon-quantum dots: Multi-color emission and its application as optical dual-mode sensor. Journal of Alloys and Compounds, 941, 168985. https://doi.org/10.1016/j.jallcom.2023.168985
Islam, S. U., Latief, U., Ahmad, I., Khan, Z., Ali, J., & Khan, M. S. (2022). Novel NiO/ZnO/Fe₂O₃ white light-emitting phosphor: Facile synthesis, color-tunable photoluminescence and robust photocatalytic activity. Journal of Materials Science: Materials in Electronics, 33(29), 23137–23152. https://doi.org/10.1007/s10854-022-09079-8