Prof. Dr. Muhammad Nasimullah Qureshi | Material Chemistry | Best Researcher Award

Prof. Dr. Muhammad Nasimullah Qureshi | Material Chemistry | Best Researcher Award

Professor, University of Swabi, Pakistan

Prof. Dr. Muhammad Nasimullah Qureshi is an accomplished academic and researcher in the field of Organic Chemistry, currently serving as the Chairman of the Department of Chemistry at the University of Swabi, Khyber Pakhtunkhwa, Pakistan. With over two decades of experience, Dr. Qureshi has earned a reputation for his significant contributions to chemistry and his role in shaping future scientists through academia. His international research experience includes postdoctoral work in China and Austria, as well as fellowships in prestigious organizations. He has a vast professional background, including positions at the Pakistan Council of Scientific and Industrial Research (PCSIR) and in quality control in the pharmaceutical industry. His dedication to advancing chemical research and education makes him a respected figure in his field. 🌍🔬

Publication Profile

Google Scholar

Education 🎓

Dr. Qureshi holds a Ph.D. in Chemistry, which he obtained from the University of Innsbruck, Austria, in 2010, where he specialized in analytical techniques and phytochemical investigations. Prior to his doctorate, he completed an M.Sc. in Organic Chemistry and a B.Ed. in Science. He further pursued postdoctoral research at the Chinese Academy of Sciences, China, in 2014-15. His academic journey has been marked by excellent achievements, including a scholarship for his Ph.D. studies under the Higher Education Commission of Pakistan. 🎓📚

Professional Experience 💼

Dr. Qureshi’s academic career spans several prestigious institutions. He is a Professor of Organic Chemistry and has served as the Chairman of the Department of Chemistry at the University of Swabi since 2018. His previous roles include Associate and Assistant Professor at Abdul Wali Khan University Mardan, where he contributed to curriculum development and research. Dr. Qureshi has also worked as a Senior Scientific Officer and Scientific Officer at the Pakistan Council of Scientific and Industrial Research, where he was involved in national scientific initiatives. In addition to his academic roles, Dr. Qureshi has gained practical industry experience in quality control at Bryon Pharmaceuticals in Pakistan. 🏫🔬

Awards and Honors 🏅

Dr. Qureshi has been recognized with numerous prestigious awards, including the CAS-PIFI Visiting Scientist Fellowship (2024) from the Chinese Academy of Sciences, China, and the Ernst-Mach Fellowship Award from OEAD Austria (2019). His accolades also include the Research Productivity Award from PCST, Pakistan, and various research project sponsorships by HEC, Pakistan, and BMBWF, Austria. Dr. Qureshi’s remarkable contributions to chemistry and research are further acknowledged through his memberships in the National Academy of Young Scientists, Pakistan, and the Society for Chemistry and Industry, London. 🏆🥇

Research Focus 🔍

Dr. Qureshi’s research focuses on organic chemistry, particularly in the areas of nanotechnology, catalysis, and the development of new chemical methods for environmental and biomedical applications. His work on metallic nanoparticles for biomedical applications and hydrogen gas production through green catalysts is highly regarded. Additionally, his research explores bio-engineered silver and gold nanoparticles and their role in improving various chemical processes. Through his research, Dr. Qureshi has contributed to the development of sustainable chemical solutions and advancements in phytochemical investigations. 🌱🧪

Conclusion ✨

With a wealth of experience in both academia and industry, Prof. Dr. Muhammad Nasimullah Qureshi has consistently worked toward advancing the field of organic chemistry and contributing to global scientific communities. His international recognition, numerous awards, and active research in nanotechnology and catalysis demonstrate his dedication to scientific excellence. As a leader in his field, Dr. Qureshi continues to inspire the next generation of chemists and researchers. 🌐🔬

Publications 📚

Fabrication of chitosan supported copper nano catalyst for the hydrogen gas production through methanolysis and hydrolysis of NaBH4. International Journal of Hydrogen Energy 2025, 101, 313–322. Link to publication (Impact Factor: 8.1)

Metallic Nanoentities: Bio-Engineered Silver, Gold, and Silver/Gold Bimetallic Nanoparticles for Biomedical Applications. HELIYON 2024, 10(18): e37481. Link to publication (Impact Factor: 3.4)

Dihydropyrazole Derivatives Act as Potent α-Amylase Inhibitor and Free Radical Scavenger: Synthesis, Bioactivity Evaluation, Structure Activity Relationship, ADMET and Molecular Docking Studies. ACS Omega 2023. Link to publication (Impact Factor: 4.132)

Green Synthesis of Gold and Silver Nanoparticles Using Opuntia dillenii Aqueous Extracts: Characterization and Their Antimicrobial Assessment. Journal of Nanomaterials, vol. 2022, Article ID 4804116, 17 pages. Link to publication (Impact Factor: 3.791)

Antioxidant and cytotoxic activity of a new Ferruginan A from Olea ferruginea: in vitro and in Silico Studies. Oxidative Medicine and Cellular Longevity 2022, vol. 2022, Article ID 8519250, 7 pages. Link to publication (Impact Factor: 7.310)

Photocatalytic Degradation of the Antibiotic Ciprofloxacin in the Aqueous Solution Using Mn/Co Oxide Photocatalyst. Journal of Materials Science: Materials in Electronics 2022. Link to publication (Impact Factor: 2.8)

Black pepper (Piper nigrum) fruit-based gold nanoparticles (BP-AuNPs): Synthesis, characterization, biological activities, and catalytic applications-A green approach. Green Processing and Synthesis 2022, 11(1), 11-28. Link to publication (Impact Factor: 3.970)

Synthesis, biological activities of alcohol extract of Black Cumin seeds (Bunium Persicum) based gold nanoparticles and their catalytic applications. Green Processing and Synthesis 2021, 10(1), 440-455. Link to publication (Impact Factor: 3.970)

 

Haojie Li | Chemical Engineering | Best Researcher Award

Haojie Li | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr Haojie Li, Shihezi University, China

Assoc. Prof. Dr. Haojie Li is a renowned expert in chemical engineering, specializing in chemical process intensification, heat and mass transfer, and multiphase flow. He currently serves as an associate professor at Shihezi University in China. Dr. Li has led over 10 national and provincial research projects and has published 16 high-level papers. He holds several patents, including two Chinese national invention patents. Recognized for his academic excellence, he has won prestigious awards, such as the Ministry of Education’s Teaching and Research Achievement Awards. His research focuses on carbon capture, utilization, and storage (CCUS) and computational fluid dynamics. 🔬🌱📚

Publication Profile

Scopus

Education

Dr. Li is a dedicated educator who has made significant contributions to the academic and research fields. Through his published educational reform papers and textbook editing, he demonstrates a strong commitment to improving the learning environment and fostering academic growth. His efforts focus on enhancing the quality of education, promoting innovative teaching methods, and advancing scholarly research. Dr. Li’s work reflects his passion for educational development and his dedication to shaping the future of education. 📚✍️🎓📖

Research Leadership

Assoc. Prof. Dr. Haojie Li is a distinguished researcher and leader in the fields of energy, chemical engineering, and environmental science 🌱⚡. He has spearheaded numerous impactful scientific projects, particularly in multiphase process intensification technology, aimed at enhancing carbon capture and utilization 🌍💨. His work is vital in advancing industry practices while reducing environmental footprints 🌿. Through his expertise, Dr. Li is contributing to the development of sustainable technologies that play a key role in addressing global environmental challenges 🔬🌍. His leadership and research continue to shape the future of energy and environmental practices in the industry.

Recognition and Awards

He has earned recognition for his outstanding contributions to research and education, receiving multiple prestigious awards. Notably, he was awarded first prizes for the Ministry of Education’s Teaching and Research Achievement Awards, showcasing his excellence in both teaching and research. Additionally, his groundbreaking work in chemical engineering earned him a second prize for the Basic Research Achievement Award from the Chemical Engineering Society of China. These accolades reflect his significant impact in his field, underlining his dedication and expertise. 🏆📚🔬🌟

Expertise in Key Research Areas

Dr. Li’s research focuses on Carbon Capture, Utilization, and Storage (CCUS), Chemical Process Intensification, and Thermal Transfer, addressing critical global energy challenges 🌍. His work in computational fluid dynamics and multiphase flow is essential for advancing more efficient processes in these areas 💡. By optimizing energy systems and improving sustainability, Dr. Li is contributing to the development of innovative solutions that reduce environmental impact 🌱. His expertise is shaping the future of energy technologies and fostering a cleaner, more sustainable world ⚡. With a keen focus on practical applications, Dr. Li’s work plays a vital role in global energy transformation 🔋.

Research Focus

Assoc. Prof. Dr. Haojie Li’s research focuses on advanced materials and their applications in energy and environmental fields. His work primarily involves the development of novel nanomaterials, such as covalent organic frameworks (COFs), for efficient CO2 capture and separation in mixed matrix membranes. His studies also explore the structural effects of materials on catalytic processes, including oxygen reduction reactions and energy storage. Additionally, he investigates the impact of flow dynamics and geometry on chemical processes, with an emphasis on optimizing energy consumption and enhancing performance in various engineering applications. 🌍⚡🔬💨

Publication Top Notes

Constructing CO2 capture nanotraps via tentacle-like covalent organic frameworks towards efficient CO2 separation in mixed matrix membrane

Customized Heteronuclear Dual Single-Atom and Cluster Assemblies via D-Band Orchestration for Oxygen Reduction Reaction

The structure-effect relationship between inline high shear mixers and micromixing: Experiment and CFD simulation

Surface reconstruction enables outstanding performance of Fe2O3/Ni(OH)2 nanosheet arrays for ultrahigh current density oxygen evolution reaction

Effects of stator and rotor geometry on inline high shear mixers: Residence time distribution, flow, and energy consumption