Yujie Chen | Materials Science | Best Researcher Award

Prof. Dr.Yujie Chen | Materials Science | Best Researcher Award

Materials Science | Professor at  Shanghai Jiao Tong University, China

Prof. Dr. Yujie Chen, born in Hebei Province, China, is an Associate Professor at Shanghai Jiao Tong University (SJTU) specializing in polymeric materials and advanced functional composites. With a passion for innovative research in soft electronics, bio-medicine, and nanotechnology, his work explores materials that mimic biological systems. Prof. Chen’s academic career has led him to make significant contributions to the development of materials like hydrogels, artificial muscles, and piezoelectric composites. His research blends fundamental materials science with practical applications in cutting-edge technologies, and he continues to collaborate internationally to push the boundaries of material engineering. With a robust portfolio of publications, grants, and global recognition, Prof. Chen is widely regarded for his impactful work in his field.

Profile

Scopus

🎓 Education 

Prof. Yujie Chen holds a Ph.D. in Materials Science and Engineering from East China University of Science and Technology (ECUST), awarded in 2012. He also completed an exchange Ph.D. program in Polymer Engineering and Physics at the Berlin Institute of Technology (TU-Berlin), where he worked under Prof. Manfred H. Wagner. Prof. Chen’s undergraduate studies were also at ECUST, where he received a Bachelor’s in Materials Science and Engineering. His academic journey was further enriched by joint research at Lübeck University in Germany, which provided him with a global perspective on materials science. Prof. Chen’s education equipped him with extensive theoretical knowledge and practical experience, making him an expert in the development of advanced materials and composites for a variety of applications.

🏆 Experience 

Prof. Yujie Chen has built a distinguished career at Shanghai Jiao Tong University (SJTU), where he has progressed from Lecturer (2015-2020) to Associate Professor (2021-2024) and now a Professor since 2024. Prior to his academic positions, he worked as a postdoctoral researcher at TU-Berlin and ECUST, where he expanded his expertise in polymer engineering and materials science. Over the years, Prof. Chen has led cutting-edge research projects focusing on advanced functional materials, including self-healing polymers, composite materials, and bio-inspired systems. His leadership in academic research has led to numerous funded projects, awards, and the development of new technologies. Prof. Chen is also a dedicated educator and mentor, guiding students and researchers in exploring innovative materials for diverse applications.

🏅 Awards and Honors 

Prof. Yujie Chen’s outstanding research has earned him several prestigious awards. These include the 2023 National Youth Talent award, 1st Prize of Shanghai Science and Technology Progress Award (2022), and the Youth Outstanding Contribution Award of the China Nonferrous Metals Society (2022). He was named Morning Star Outstanding Young Scholar at SJTU in 2020 and received the Shanghai Sailing Scholar Award in 2016. Prof. Chen’s contributions to material science and technology have been recognized by numerous academic organizations and funding bodies, reflecting his leadership and innovation. His work continues to be supported by several high-profile research grants, underlining his influence in advancing materials science.

🔬 Research Focus 

Prof. Yujie Chen’s research focuses on the development of advanced polymeric materials and composites, particularly for applications in artificial muscles, soft electronics, bio-medicine, and nanotechnology. He specializes in designing functional hydrogels, piezoelectric composites, and self-healing materials that integrate biological and mechanical properties. His work aims to create materials that are responsive to environmental stimuli and capable of mimicking natural systems, advancing technologies such as wearable devices, energy harvesting systems, and artificial actuators. Prof. Chen is also interested in the intersection of material science and biotechnology, exploring how novel materials can be used in healthcare and environmental applications.

✅ Conclusion

Prof. Dr. Yujie Chen is an exemplary candidate for the Best Researcher Award due to his outstanding contributions to the field of materials science. His dedication to solving complex problems with novel materials and his ability to bridge academic research with real-world applications make him highly deserving of this recognition. His work continues to influence the development of next-generation technologies that will have lasting impacts on multiple industries, solidifying his place among the best researchers in his field.

Publication

Waxberry-liked micro-nanostructured, superhydrophobic surfaces with enhanced photothermal de-icing and passive anti-icing properties

Authors: S. Liu, Z. Zhu, Q. Zheng, H. Liu, H. Li

Citations: 0

Year: 2025

A multi-modal deformation sensing hydrogel with a nerve-inspired highly anisotropic structure

Authors: Q. Zhang, Y. Chen, S. Li, Y. Guo, H. Liu

Citations: 0

Year: 2024

O2-H2O2 high-efficient co-oxidation of carbohydrate biomass to formic acid via Co3O4/C nanocatalyst

Authors: Y. Chen, Y. Yang, X. Liu, F. Jin

Citations: 0

Year: 2024

Ag-S coordination strategy for high recovery driving stress in recyclable shape memory polymers

Authors: Z. Zhu, S. Liu, J. Yao, H. Liu, H. Li

Citations: 0

Year: 2024

Thermal responsive polyurethane/brominated isobutylene isoprene rubber co-continuous IPNs elastomer: From tunable shape memory behavior to high damping properties

Authors: Q. Yu, Q. Fan, W. Chen, Y. Wu, H. Liu

Citations: 1

Year: 2024

Tailorable effective microwave absorption bandwidth of chitosan-derived carbon-based aerogel under different compression

Authors: W. Chu, K. Wang, S. Liu, H. Li, H. Liu

Citations: 1

Year: 2024

Quercetin-Loaded Bioglass Injectable Hydrogel Promotes m6A Alteration of Per1 to Alleviate Oxidative Stress for Periodontal Bone Defects

Authors: H. Zhu, C. Cai, Y. Yu, Y. Chen, Y. Xu

Citations: 7

Year: 2024

Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications

Authors: X. Yang, W. Chen, Q. Fan, F. Lai, H. Liu

Citations: 26

Year: 2024

One-Step Cooperative Growth of High Reaction Kinetics Composite Homogeneous Core–Shell Heterostructure

Authors: H. Liu, Q. Chen, H. Chen, L. Shi, H. Li

Citations: 7

Year: 2024

A controllable foaming approach for the fabrication of “rattan-like” graphene-based composite aerogel with desirable microwave absorption capacity

Authors: X. Zhang, Q. Zheng, Y. Chen, X. Jiang, S.M. Zhu

Citations: 9

Year: 2024

 

 

 

Xueqing Xu | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Xueqing Xu | Materials Science | Best Researcher Award

Materials Science |  associate professor at Northwest Normal University , China

Xueqing Xu is a researcher and lecturer at the School of Chemistry and Chemical Engineering, Northwest Normal University. She completed her Ph.D. at Harbin Institute of Technology in 2021, where she gained extensive knowledge in the field of chemistry and material science. Xu’s primary focus is the design of multifunctional MOF (Metal-Organic Framework)-based nano/micromaterials with a specific emphasis on their applications in electromagnetic wave absorption/shielding and photocatalysis. These innovative materials have significant potential in various industries, including environmental protection and energy conservation. As a dedicated scholar, Xu continues to contribute to the scientific community through her ongoing research and publications in prestigious journals. Her work has helped pave the way for more sustainable and efficient solutions in the realm of material science.

Publication Profile

Scopus

Educational Background 🎓📚

Xueqing Xu earned her Ph.D. in Chemistry from Harbin Institute of Technology in 2021. During her doctoral studies, she focused on the development and applications of Metal-Organic Frameworks (MOFs) for a variety of uses, including electromagnetic wave absorption and photocatalysis. Prior to her Ph.D., she completed a bachelor’s and master’s degree in Chemistry, gaining a strong foundation in material science. Her education has provided her with comprehensive knowledge in chemical engineering, materials chemistry, and nanotechnology, which has greatly contributed to her current research trajectory. At present, she is a lecturer at Northwest Normal University, where she imparts her expertise to undergraduate and graduate students while continuing her research on advanced functional materials.

 Experience 🔬📖

After completing her Ph.D. at Harbin Institute of Technology, Xueqing Xu took on the role of lecturer at the School of Chemistry and Chemical Engineering, Northwest Normal University. As a lecturer, Xu combines her research pursuits with teaching responsibilities, fostering a dynamic learning environment for students. Her research experience includes investigating the synthesis and application of MOF-based nano/micromaterials, with a particular focus on their electromagnetic wave absorption and photocatalytic properties. She has collaborated with experts in her field to further her understanding of materials chemistry. Xu’s professional experience is also marked by her active participation in scientific conferences, where she shares her research findings. Her career reflects a strong commitment to advancing material science and making practical contributions to sustainability and environmental science.

Honors & Awards 🏆🎓

Throughout her academic career, Xueqing Xu has earned several honors for her dedication to research and innovation in the field of chemistry. In addition to receiving her Ph.D. from Harbin Institute of Technology in 2021, she has published several influential papers in peer-reviewed journals, earning recognition within the scientific community. While she is still early in her academic career, her research in electromagnetic wave absorption and photocatalysis has already shown promise and led to collaborations with top-tier institutions. Xu’s groundbreaking work with multifunctional MOF-based nano/micromaterials has the potential to revolutionize various sectors, including environmental and energy industries. Her contributions to material science have set her on a trajectory for continued recognition, including future awards in materials research, environmental science, and nanotechnology.

Research Interests 🔍📊

Xueqing Xu’s research interests revolve around the design and application of multifunctional Metal-Organic Framework (MOF)-based nano/micromaterials. Specifically, her work focuses on developing materials for electromagnetic wave absorption and shielding, with potential applications in communications and environmental protection. Additionally, Xu is exploring the use of these materials in photocatalysis, aiming to address critical challenges in environmental remediation and energy conservation. Her research aims to design highly efficient, sustainable, and cost-effective materials for these applications. Xu’s ongoing work emphasizes the importance of functional material design for practical solutions in industrial settings. By understanding the interaction between electromagnetic waves and materials, her research could pave the way for better technologies in electromagnetic compatibility and pollution control. Her contributions are important not only to theoretical chemistry but also to the real-world applications of advanced materials.

Publications📚

Title: Boosting the photocatalytic benzylamine oxidation and Rhodamine B degradation using Z-scheme heterojunction of NiFe2O4/rGO/Bi2WO6

Authors: H. Xi, Hui; H. Wang, Hui; D. Liu, Dan; Z. Yang, Zhiwang; Z. Lei, Ziqiang

Citations: 0

Year: 2025

Title: Fabrication of Z-scheme heterojunction of UCN/BWO for selective photocatalytic benzylamine oxidation

Authors: H. Xi, Hui; X. Xu, Xueqing; Q. Yang, Qian; Z. Yang, Zhiwang; Z. Lei, Ziqiang

Citations: 1

Year: 2024

Title: Synthesis of Zn0.2Cd0.8S/MoS2/rGO photocatalyst for efficient solar-driven selective organic conversion

Authors: H. Xi, Hui; B. Lv, Bolin; Q. Yang, Qian; Z. Yang, Zhiwang; Z. Lei, Ziqiang

Citations: 1

Year: 2024

Conclusion :

Dr. Xueqing Xu’s exceptional contributions to the development of multifunctional materials for electromagnetic wave absorption and photocatalysis, her academic excellence, and her passion for research and teaching position her as a highly deserving nominee for the Best Researcher Award. Her work holds significant potential for advancing both academic knowledge and practical applications, particularly in energy and environmental fields, making her an outstanding choice for this prestigious recognition.