57 / 100 SEO Score

Mr. Vaibhav Tummalapalli l Machine learning
| Excellence in Innovation Award

Epsilon Data Management, LLC | United States

Mr. Vaibhav Tummalapalli’s research focuses on the advancement of applied machine learning methodologies, predictive modeling, and data-driven optimization across large-scale industrial domains, particularly automotive and telecommunications. His work emphasizes the integration of artificial intelligence in lifecycle analytics, customer engagement, and personalization strategies to enhance business intelligence and operational efficiency. His studies explore innovative modeling frameworks such as EV Conquest modeling, VIN-level mileage prediction, and vehicle recommendation systems, which apply behavioral, telematics, and demographic data to drive precision marketing and service optimization. Additionally, his contributions to outlier detection, cohort-based stratified sampling, and KNN imputation distance metrics extend theoretical and applied understanding in data preprocessing and imbalanced learning. His research also addresses model monitoring and drift management using SAS Viya and PySpark-based architectures, ensuring robust model performance in production environments. Through the development of scalable ML pipelines, channel propensity models, and retention-focused predictive systems, his work demonstrates the transformative potential of AI in driving measurable business outcomes, customer retention, and ethical personalization. His scholarly and technical pursuits collectively aim to advance the design of intelligent, explainable, and sustainable machine learning systems for real-world, high-impact applications

Featured Publications

Tummalapalli, V. (2025). Understanding distance metrics in KNN imputation: Theoretical insights and applications. Journal of Mathematical & Computer Applications, 4(4), 1–4. https://doi.org/10.47363/JMCA

Tummalapalli, V. (2025). Machine learning pipeline for automotive propensity models. International Journal of Core Engineering & Management, 8(3), [Issue-03].

Tummalapalli, V. (2025). Outlier detection & treatment for machine learning models. International Journal of Innovative Research and Creative Technology, 11(3).

Tummalapalli, V. (2025). Stratified sampling in cohort-based data for machine learning model development. International Scientific Journal of Engineering and Management, 4.

Vaibhav Tummalapalli | Machine learning | Excellence in Innovation Award

You May Also Like