Yunwen Xu | Engineering | Best Researcher Award

Dr. Yunwen Xu l Engineering
| Best Researcher Award

Shanghai Jiao Tong University | China

Dr. Yunwen Xu’s research focuses on advancing intelligent transportation systems, autonomous driving control, and predictive control for complex and embedded systems. Her innovative work integrates graph-based spatial-temporal modeling, data-driven control algorithms, and real-time optimization to enhance vehicle trajectory prediction, traffic signal management, and collaborative control in large-scale dynamic environments. Through over 50 high-impact publications, including 15 in top-tier journals and several ESI highly cited papers, Dr. Xu has significantly contributed to the theoretical and practical foundations of predictive control and intelligent mobility. Her research achievements include developing FPGA-based predictive controllers, robust model predictive frameworks, and reinforcement learning-based control systems for V2X-enabled autonomous vehicles. By leading national and provincial research projects and collaborating internationally with institutions like Purdue University and industrial partners such as Shanghai Electric Wind Power Group, she bridges the gap between academic innovation and industrial application. Her patents and successful technology transfers in microgrid energy management and advanced temperature control demonstrate the translational strength of her research. Recognized with prestigious honors, including the Best Paper Award at the Chinese Process Control Conference and championship at the Autonomous Driving Algorithm Challenge, Dr. Xu continues to pioneer next-generation control and automation technologies that drive the evolution of intelligent, efficient, and sustainable transportation ecosystems.

Profile:  Google Scholar 

Featured Publications

Mujeeb Abiola Abdulrazaq | engineering | Young Scientist Award

Mr. Mujeeb Abiola Abdulrazaq l engineering
| Young Scientist Award

University of North Carolina at Charlotte | United States

Mr. Mujeeb Abiola’s research focuses on advancing transportation safety and efficiency through data-driven methodologies and emerging technologies. His work extensively employs large-scale traffic and crash data, including millions of federal highway administration records, to investigate the spatiotemporal dynamics of pedestrian crashes and the evolution of crash hotspots. Utilizing advanced statistical and machine learning models, he has developed predictive frameworks that outperform traditional Highway Safety Manual standards, providing robust insights into risk factors and injury severity in both human-driven and autonomous vehicle contexts. His research on connected and autonomous vehicles (CAVs) has led to the development of traffic control algorithms that significantly enhance safety, operational efficiency, and environmental sustainability in freeway work zones. Furthermore, his studies integrate GPU-accelerated data processing, simulation-based optimization, and multi-level heterogeneity modeling to evaluate vulnerable road user behavior and assess dynamic collision risks. Through simulation platforms such as VISSIM and SUMO, combined with Python-based data analysis and GIS applications, his work systematically addresses complex traffic scenarios, including merging, diverging, and weaving segments, while also accounting for seasonal variations and temporal constraints in crash determinants. His contributions include empirical analyses of autonomous vehicle incidents, methodological advancements in microsimulation accuracy, and development of actionable strategies for real-world traffic management, ultimately aiming to improve roadway safety, inform policy, and guide evidence-based planning in modern transportation systems.

Profile:  Google Scholar 

Featured Publications

  • Abdulrazaq, M. A., & Fan, W. D. (2024). Temporal dynamics of pedestrian injury severity: A seasonally constrained random parameters approach. International Journal of Transportation Science and Technology, 9.

  • Abdulrazaq, M. A., & Fan, W. (2025). A priority based multi-level heterogeneity modelling framework for vulnerable road users. Transportmetrica A: Transport Science, 1–34. https://doi.org/10.1080/23249935.2025.2516817

  • Abdulrazaq, M. A., & Fan, W. (2025). Seasonal instability in crash determinants: A partially temporally constrained modeling analysis. SSRN 5341417. https://doi.org/10.2139/ssrn.5341417

Sheharyar Khan | Engineering | Young Scientist Award

Dr. Sheharyar Khan l Engineering
| Young Scientist Award

Shandong University | Pakistan

Dr. Sheharyar Khan is a distinguished computer scientist and software engineer with extensive expertise in software engineering, artificial intelligence, and cybersecurity, specializing in IoMT edge-cloud frameworks and network intrusion detection systems. Currently a Postdoctoral Research Fellow at Shandong University, he leads independent and collaborative research initiatives, designing experiments, analyzing data, and publishing findings in high-impact journals. His doctoral research at Northwestern Polytechnical University focused on optimization-based hybrid offloading frameworks for IoMT in edge-cloud healthcare systems, demonstrating the integration of advanced computing techniques with practical healthcare applications. Dr. Khan has made significant contributions to explainable AI and hybrid ensemble machine learning, as seen in publications such as “HCIVAD: Explainable hybrid voting classifier for network intrusion detection systems” and “Consensus hybrid ensemble machine learning for intrusion detection with explainable AI”. With prior experience as a lecturer and IT specialist, he combines academic rigor with practical software development expertise. Dr. Khan has 104 citations across 10 documents, an h-index of 6, an i10-index of 5, is indexed under Scopus Author ID 57221647889, and holds ORCID 0000-0002-0089-0168, reflecting his impact on the field. Recognized for his analytical skills, innovation, and interdisciplinary research, he continues to advance secure, intelligent, and explainable computing systems for both academic and real-world applications.

Profile: Scopus | Google Scholar | Orcid | Researchgate 

Featured Publications

Khan, S., Liu, S., Pan, L., & Mei, G. (2025). Optimization-based hybrid offloading framework for IoMT in edge-cloud healthcare systems. Future Generation Computer Systems, 108163. https://doi.org/

Ahmed, S. K. M. T. S., Jiangbin, Z., & Khan, S. (2025). HCIVAD: Explainable hybrid voting classifier for network intrusion detection systems. Cluster Computing, 28(343). https://doi.org/

Ahmed, M. T. S., Jiangbin, Z., & Khan, S. (2024). Consensus hybrid ensemble machine learning for intrusion detection with explainable AI. Journal of Network and Computer Applications, 5*. https://doi.org/

Khan, S., Jiangbin, Z., & Ali, H. (2024). Soft computing approaches for dynamic multi-objective evaluation of computational offloading: A literature review. Cluster Computing, 27(9), 12459–12481. https://doi.org/